Financing New High Voltage Transmission Lines in Nepal Using HTLS Conductors Surendra Rajbhandari, Nepal Electricity Authority Zhang Lei, ADB South Asia Energy Division Asia Clean Energy Forum June 2015

Overview of Nepal Power System

- Total installed capacity: 782 MW
- Under Construction: 1300 MW
- Transmission Lines: 2640 cct km
- 40 Grid Substations of 2200 MVA
- Average annual growth rate of peak: 10%
- Average annual growth rate of energy: 8.5%
- Access to grid electricity: 65%
- Peak Load in FY 2014/15= 1300 MW

Hydropower Potential and Licensing Status

- Hydropower Potential: Over 83,000 MW
- Storage capacity plants: 21,400 MW
- Survey license issued: 6600 MW
- Government reserved: 5584 MW
- Survey application :3096 MW
- Projects under construction: 1300 MW
 - NEA and subsidiary companies = 1002 MW- IPPs = 297 MW

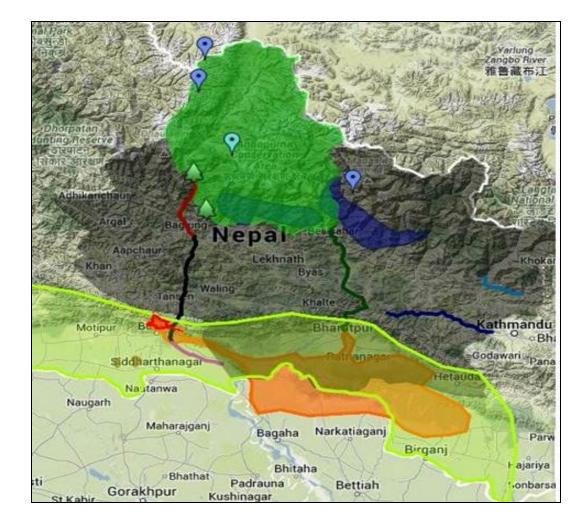
SASEC Power System Expansion Project

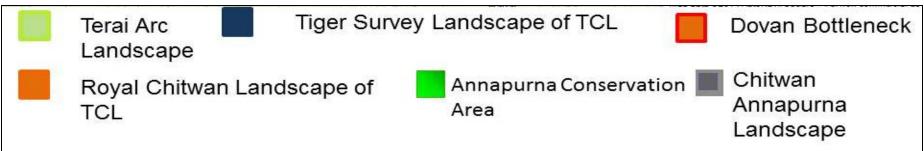
Project Cost: \$440 million

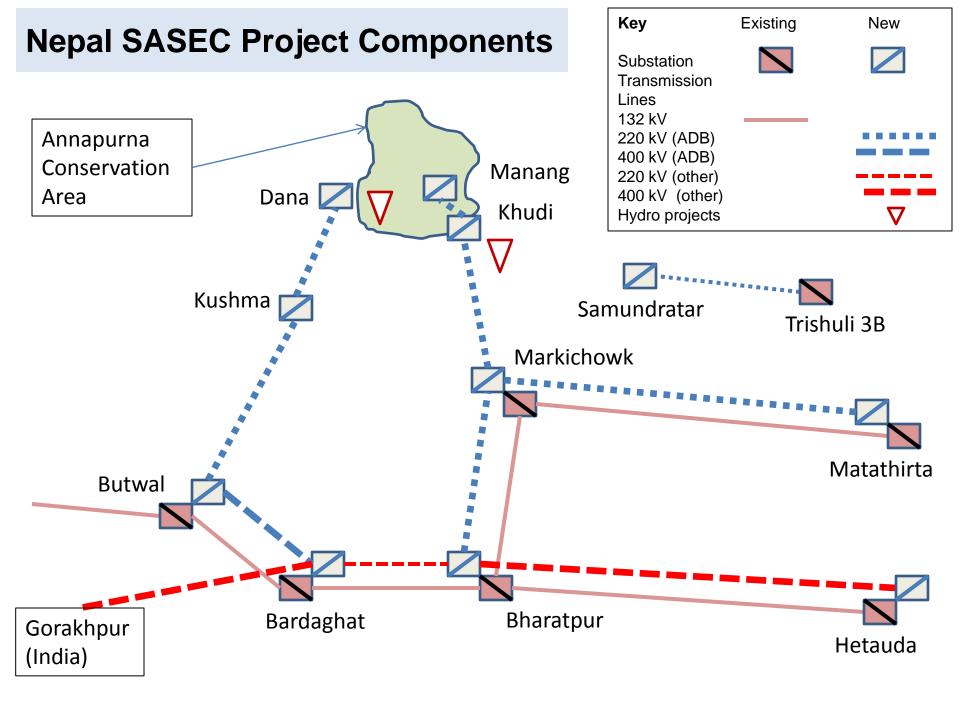
- ADF loan : \$180 million
- EIB: \$ 120 m
- Norway: \$60.0 m
- ADB SCF: \$11.2 m
- GoN:
- Loan signed:
- Loan closing: 30 June 2022

\$60.34 m 11 July 2014

Components of SASEC Power System Expansion Project


- Output 1: Power transmission capacity increased.
 - Construction of 45 km of 400 kV and 191.5 km of 220 kV transmission lines along Kaligandaki Corridor and Marsyangdi-Kathmandu route;
 - Construction of 125 km of 220 kV TL along Marsyangdi Corridor and 24 km of 132 kV TL along Samundratar-Trishuli route.
- Output 2: Power distribution network improved
- Output 3: Mini-grid based renewable energy systems in offgrid areas increased.
- Output 4: Capacity development supports to NEA and AEPC.


Description	Kaligandaki River Basin	Marsyangdi River Basin
Potential, MW	2000	2200
PPA signed, MW	150	119
Survey license issued, MW	840	652
IBN Project, MW		600

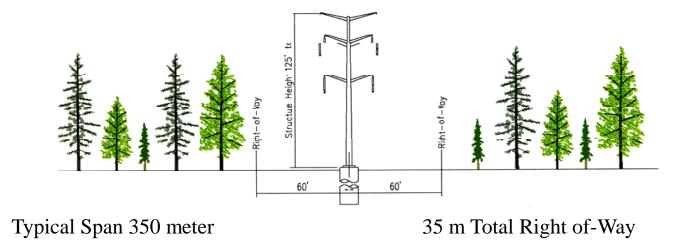

CHALLENGE

 Provide ~ 1500 MW transmission capacity in each of 2 river basins

- Commissioning dates uncertain
- Multiple projects total
- ~ 150 MW in each river under construction now
- Minimize environmental footprint

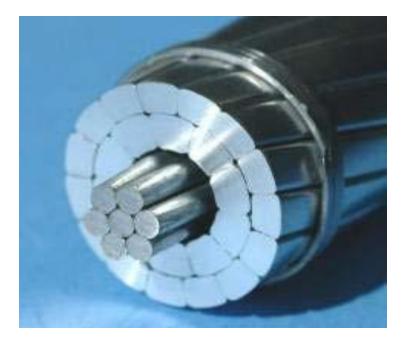
Options Considered

- 400 kV line with Quad MOOSE Conductors
- 400 kV line with Twin MOOSE Conductors
- 220 kV with Quad MOOSE Conductors
- 220 kV with Twin HTLS Conductors
- Transfer requirement is 1600 MW.
- RoW acquisition is major problem in Nepal.
- 220 kV with HTLS reduces RoW requirement significantly from 52 m (400 kV) to 35 m.
- Comparison of the options provided 220 kV with twin HTLS as optimum solution.


Why HTLS Conductors ?

For reconductoring:

- Enhanced current carrying capacity.
- No modification / reinforcement to existing towers.
- Cost effectiveness.


For new lines:

- Enhanced current carrying capacity.
- Reduction in overall capital expenditure.
- Reduction in overall operating expenditure
- Low sag tension property
- Shorter project period

Manufacturers

- Southwire: ACSS (Aluminum Conductor, Steel Supported)
- 3M: ACCR (Aluminum Conductor, Composite Reinforced)
- J-Power: Gap
- LS Cable: Invar
- CTC: ACCC (Aluminum Conductor, Composite Core)

Gap

Invar

Source: EPRI

ACCC (CTC Carbon fibre)

3M (ACCR)

Source: EPRI

Comparison of Cost and Current Carrying Capacity

Conductor	Current capacity	Price
ACSR	1	1
ACSS	1.8 to 2.0	1.2 -1.5
GAP	1.6 to 2.0	2
INVAR	1.5 to 2.0	3-5
ACCR	2-3	5-6.5
ACCC	2	2.5-3.0

Source: EPRI

Technical Comparison: Current Carrying Capacity

		ACSS (ACSR
	ACSR	Moose
Particulars	Moose	equivalent)
Current Carrying Capacity (Amperes)	876	1950
Current Carrying Capacity (Twin)	1752	3900
Current Carrying Capacity (Quad)	3504	7800
Same Current Construction	Quad	Twin
Total Conductor Weight (Per Circuit)	24048	11898
Savings in Weight (%)	_	50.00

	Conductor Type & Code Name	Voltage	Circuits	Conductors per Phase	Unit Cost	Theri Rati		Econo Optir Load	nal
		(kV)		•	\$M/km	Α	MW	Α	MW
	ACSR	220	1	1	0.17	947	343	413	150
Moose			1	2	0.20	1,894	686	634	230
			2	2	0.30	1,894	1,371	1,098	795
	220 kV		2	3	0.34	2,841	2,057	1,424	1,031
	-	400	1	1	0.51	947	623	660	434
	VS.		1	2	0.60	1,894	1,247	1,023	673
	400 kV		2	2	0.80	1,894	2,493	1,670	2,198
	?		2	3	0.90	2,841	3,740	2,165	2,850
	ACCC	220	1	1	0.23	2,002	725	542	196
Budapest		1	2	0.27	4,005	1,450	831	301	
			2	2	0.40	4,005	2,900	1,391	1,007
			2	3	0.45	6,006	4,348	1,858	1,345

Thank you!