Preparing Outer Islands for Sustainable Energy Development (POISED) - Maldives

Priyantha D C Wijayatunga Principal Energy Specialist South Asia Energy Division

Asia Clean Energy Forum Manila, Philippines 19 June 2015

Outline

- Overview
- Pilot Islands
- System Design
- Roadmap for expansion
- Final Remarks

- 1192 islands spread over 750 km by 120km
 - 298 sq km, 1-2 sq km each, 1.5m above msl
 - 194 inhabited islands and about 100 resorts
- Access to electricity 100%
- Installed generation capacity
 - 100% diesel
 - 141 MW in inhabited islands, 105 in resorts
- Electricity costs vary 30-70 cents/kWh
- Annually 120 million liters of diesel for electricity
- subsidies exceeding \$40 million annually

Issues needing attention

- Many independent isolated grids
- Low efficiency in generation
 - Poor accountability in diesel use
- Low availability of generation
- Higher losses in distribution systems
 - Under invested
- Grids not ready for renewable energy absorption
 - Generator controls not good enough

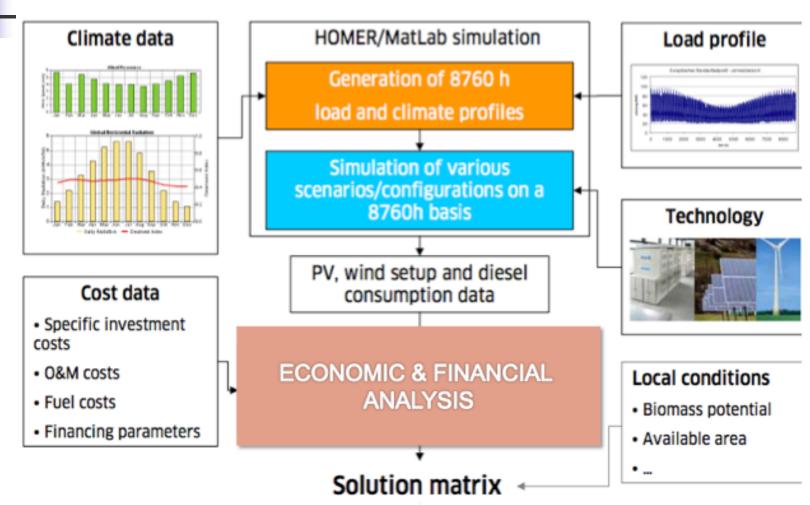
Pilot Islands - Current Status

Island	Population	Daily Peak (kW)	Annual Energy (MWh)
Addu City	25,571	3850	22,161
Villingili	3,460	481	2,684
Kurendhoo	1,945	165	881
Goidhoo	748	69	417
Buruni	579	78	322

Pilot Islands

- Islands operate 1-3 diesel gen sets to meet demand
 - through a small low voltage network
- Peak demand often below 50% of installed capacity
 - substantial additional diesel gen set capacity needed for maintenance
 - poorly designed system with inappropriate generator size

Design Methodology - Objectives


- Minimize fuel consumption
 - Maximize Subsidy Savings
- Optimum level of %RE penetration
 - Minimum operating cost
- Financial and economic viability
- Minimize CO₂ emissions
- Minimize local environmental impact
- Optimize land-use

Design.... - Models

- Type A Moderate RE penetration
 - Up to 10% of energy or 30%-40% of peak-load
 - No Storage, new generators
- Type B High RE penetration
 - 10%-80% energy or 90% of peak-load
 - Storage back-up (Security, Grid support)
- Type C Full RE penetration
 - RE penetration close to 100% (peak <20kW)
 - Storage back-up (security, grid support, load following)

Design.... -

Output — Generation Mix

Island	PV (kW)	Diesel Generation (kW)	Storage (kWh)	Туре
Addu City	1600	6850 (1x1500, 3x1000, 3x750)	None	Α
Villingili	300	800 (1x500, 1x300)	223	В
Khurendhoo	300	254 (1x104, 1x150)	223	В
Goidhoo	200	160	223	В
Buruni	100	100	111.5	В

Output — Stability assessment

Island	Conditions	Critical frequency without storage	Critical frequency with storage
	100% PV power loss	47.93 Hz	-
Addu City	Sudden load loss of 40%	51.65 Hz	-
Addu City	Load increase and PV power loss with two generators	48.08 Hz	-
	100% PV power loss	49.18 Hz	-
N/2112 2115	Sudden load loss of 30%	50.8 Hz	-
Villingilly	50% PV power loss	49.77 Hz	-
	50% PV loss and load increase	47.46 Hz	49.28 Hz
Khurendhoo	100% PV power loss	48.79 Hz	-
	Sudden load loss of 30%	50.56 Hz	-
	50% PV power	49.73 Hz	-
	PV loss and load increase	47.09 Hz	49.38 Hz

Output — Stability assessment

Island	Conditions	Critical frequency without storage	Critical frequency with storage
	80% PV power loss	49.47	-
	100% PV power loss	48.7	-
Buruni	Sudden load loss of 30%	50.49	-
	PV power loss and load increase	<mark>47.41</mark>	<mark>48.49</mark>
Goidhoo	80% PV power loss	48.8	-
	100% PV power loss	48.22	-
	Sudden load power loss of 30%	50.60	-
	PV power loss and load increase	47.5	49.27

Economic feasibility

	BAU	No Oil price	Capital cost escalation		Solar PV Output Reduced by		Combined
		growth	10%	20%	10%	20%	effect
Addu City	40.96%	38.64%	37.37%	34.37%	39.81%	38.65%	34.12%
Goidhoo	14.30%	12.54%	12.93%	11.76%	14.30%	14.30%	11.20%
Buruni	29.44%	27.08%	26.95%	24.86%	29.44%	29.44%	24.68%
Villingili	19.58%	17.01%	17.80%	16.29%	19.58%	19.58%	15.33%
Khurendhoo	24.32%	22.09%	22.17%	20.36%	24.32%	24.32%	20.01%

Financial feasibility

	Base Case	Increase in Project Cost by 10%	No increase in diesel costs	Reduction in solar intensity by 10%
Addu City	11.7%	10.3%	9.9%	10.7%
Goidhoo	4.9%	3.8%	3.5%	4.2%
Buruni	13.8%	12.4%	12.1%	13.1%
Villingili	5.6%	4.4%	4.0%	4.8%
Khurendhoo	9.1%	7.7%	7.4%	8.0%

WACC 1.2%

Roadmap for expansion

- Extended to 162 islands
- Solar PV systems
 - On the ground and rooftops
 - Total capacity 25.7MWp
- Diesel generators 44MW
- Li-Ion batteries 7.5MWh
- Total cost is in the range of \$140 million

- Low carbon energy sector development
 - With adequate reliability
- Improved energy security
- RE enabled grids for private sector investment in PV
- Conducive regulatory environment
 - Technical regulations
 - Tariff regulations

Acknowledgement

- Len George, ADB
- Antonio Lopez, ADB
- Jose Aguado, Effergy, Spain

Thank you

Email: pwijayatunga@adb.org

