Confronting Myths about vRE Integration

Jaquelin Cochran, Ph.D. National Renewable Energy Laboratory 7 June 2016 Asia Clean Energy Forum

This Looks Scary

Output from a PV plant

This Looks Scary, Too

And this....

The duck curve shows steep ramping needs and overgeneration risk

(from the California Independent System Operator)

Can grids support high levels (>10-20% annually) of variable RE?

Country	%Eectricity from Wind	Balancing
Denmark	43% in 2015	Interconnection, fexible generation (including CHP), and good markets
Portugal	25% in 2013	Interconnection to Spain, gas, hydro, and good market
Spain 🏽 🏽	21% in 2013	Gas, hydro, and good market
Ireland	18% in 2013	Gas and good market

Many grids are operating with 20%–30% variable renewables.

Their experiences demonstrate that actions taken to integrate wind and solar are unique to each system, but do follow broad principles.

Can variable RE provide baseload power?

- Yes, variable RE can contribute to resource adequacy, but changes how we think of "baseload"
- In high RE systems, we want the balance of generation to be flexible, and <u>not</u> necessarily be designed to run like a traditional baseload unit

Traditional Utility Paradigm

Can variable RE provide baseload power?

- Yes, variable RE can contribute to resource adequacy, but changes how we think of "baseload"
- In high RE systems, we want the balance of generation to be flexible, and <u>not</u> necessarily be designed to run like a traditional baseload unit

Traditional Utility Paradigm (w/ some RE)

Can variable RE provide baseload power?

- Yes, variable RE can contribute to resource adequacy, but changes how we think of "baseload"
- In high RE systems, we want the balance of generation to be flexible, and <u>not</u> necessarily be designed to run like a traditional baseload unit
 - First plan to use all the available RE; determine when and where the RE is available
 - Plan what additional resources—and their characteristics—are needed to

Do individual renewable energy plants require backup by conventional plants?

- <u>Individual</u> plants do not require backup
 - Reserves are optimized at system level.
- Wind and solar could increase need for operating reserves.
 - But this reserve can usually be provided from other generation that has turned down
 - This reserve is not a constant amount (depends on what wind/solar are doing)
 - Many techniques are available to reduce needed reserves.
- Wind and solar can also provide reserves; in both directions when curtailed

Photo from iStock 72283000

Does RE require priority dispatch (must-run)?

- No, trend is toward treating RE like real power plants:
 - Visible
 - Schedulable
 - Dispatchable
 - Curtailable
 - Able to provide ancillary services
- Requires least-cost dispatch
- Address RE bankability separate from system operations

Supply Curve with 100 MW of Wind Power

RE production costs at \$0/MWh, so typically dispatched first to minimize operational costs

What impact does variable renewable energy have on grid stability?

Frequency stability

Solution: RE will need to provide active power controls (synthetic inertia, governor response, automatic generator control)

and area control error

How often does the wind stop blowing everywhere at the same time?

Does variable renewable energy generation require storage?

- Storage is always useful, but may not be economic.
- Detailed simulations of power system operation find no need for electric storage up to 30% wind penetration (WWSIS, CAISO, PJM, EWITS).
- 50% wind/solar penetration study in Minnesota found no need for storage (MRITS, 2014)

Source: Adrian Pingstone (Wikimedia Commons)

- At higher penetration levels, storage could be of value.
 - Recent E3 integration study for 40% penetration in California: storage is one of many options.

How expensive is integrating variable renewable energy generation to the grid?

All generation (and load) has an integration cost:

- Any generator can increase cycling for remaining generation
- Conventional plants can impose variability and uncertainty costs
- Conventional plants can create conditions that increase need for system flexibility
 - Must-run hydropower and IPP contracts; thermal plants that cannot be turned down
 - Start-up times for coal require day-ahead scheduling, which is harder for wind

http://www.nrel.gov/docs/fy11osti/51860.pdf

14

Frequently used options to increase flexibility

Frequently used options to increase flexibility

