

Energy Markets Turned Inside Out: Exploring Innovation for a Changing World August 18-19, 2016

## Storage session at GIZ/USAID/NREL Workshop on Integration of Variable RE - Asia Clean Energy Forum 2016 Rao Konidena **Principal Advisor Midcontinent Independent System Operator** (MISO)

Disclaimer – These are my views, not necessarily MISO's views.

### Independent System Operator (ISO)/Regional Transmission Organization (RTO) in North America



(Source - http://www.ferc.gov/industries/electric/indus-act/rto.asp)

### Status of use of electricity storages: Who has installed storages for what purpose, 3-4 examples around the world

| Metric                       | Size         | Metric at MISO                                           | Size                 |
|------------------------------|--------------|----------------------------------------------------------|----------------------|
| Total ISO/RTO storage<br>MWs | 29,738<br>MW | Open-loop Pumped Hydro<br>Storage<br>Lithium-ion Battery | 2,370 MW<br>21 MW    |
| PJM total                    | 6,730 MW     | Ice Thermal Storage<br>Sodium-sulfur Battery             | 4.950 MW<br>1.000 MW |
| CAISO total                  | 6,601 MW     | Flywheel                                                 | 0.860 MW             |
| MISO total                   | 2,398 MW     | Advanced Lead-acid Battery<br>Lead-acid Battery          | 0.750 MW<br>0.297 MW |
| ISO-NE total                 | 1,757 MW     | Lithium Ion Titanate Battery                             | 0.075 MW             |
| NYISO total                  | 1,463 MW     |                                                          |                      |
| ERCOT total                  | 485 MW       |                                                          |                      |
| SPP total                    | 265 MW       |                                                          |                      |

Electricity Storage definition – this slide includes pumped storage includes both behind the meter, and In front of the meter. Source – DOE Energy Storage database 3

## Key Takeaways of Today's Discussion

- MISO endeavors to create markets based on services to support the grid not specific assets
- Storage must compete with conventional assets to provide these services
- MISO is going through a process to better accommodate energy storage





Source – MISO Communications Department

### Status of use of electricity storages:

Who has installed storages for what purpose, at MISO? - <u>Only about 1.8 MW</u> of energy storage has been driven by renewable integration so far

| Metric – 97% is utility owned                       | Size (kilo<br>Watts) | Application                   | Storage in<br>kW |
|-----------------------------------------------------|----------------------|-------------------------------|------------------|
| Consumers Energy                                    | 1,872,000            | Electric Energy Time<br>Shift | 2,370,214        |
| Ameren                                              | 440,000              | Electric Supply Reserve       | , ,              |
| (blank)                                             | 63,825               | Capacity - Spinning           | 20,860           |
| Indianapolis Power & Light                          | 20,000               | Electric Bill Management      | 5,024            |
| Detroit Edison Energy                               | 1,750                | Renewables Energy             |                  |
| Xcel Energy                                         | 1,000                | Time Shift                    | 1,000            |
| REC's: Minnesota Valley, Wright-                    | 115                  | Renewables Capacity           | 759              |
| Rural Electric Cooperative                          | 04                   | Electric Bill Management      |                  |
|                                                     | 94                   | with Renewables               | 575              |
| Duke Energy                                         | 75                   | Onsite Renewable              |                  |
| Austin Utilities                                    | 37                   | Generation Shifting           | 500              |
| Wright-Hennepin Cooperative<br>Electric Association | 37                   | On-Site Power                 | 15               |

## Status of use of electricity storages:

Who has installed storages for what purpose, 3-4 examples at <u>CAISO</u>?

| Application                                                      | Storage in<br>kW                  | Application                     | Storage in<br>kW |
|------------------------------------------------------------------|-----------------------------------|---------------------------------|------------------|
| Electric Energy Time Shift                                       | 3,206,792                         | Frequency Regulation            | 4,464            |
| Electric Supply Capacity                                         | 1,228,700 Transportation Services |                                 | 2.115            |
| Load Following (Tertiary Balancing)<br>Grid-Connected Commercial | 1,212,525                         | Renewables Energy<br>Time Shift | 2.095            |
| (Reliability & Quality)                                          | 505,505                           | Onsite Renewable                | _,               |
| Renewables Capacity Firming                                      | 150,434 Generation Shifting       |                                 | 1,746            |
| Electric Bill Management                                         | 144,850                           | Demand Response                 | 600              |
| Electric Supply Reserve Capacity -<br>Spinning                   | 53,510                            | Black Start                     | 505              |
| Distribution upgrade due to solar                                | 30,077                            | Electric Supply Reserve         |                  |
| Distribution upgrade due to wind                                 | 30,000                            | Capacity - Non-Spinning         | 400              |
| Stationary Transmission/Distribution                             | 15 400                            | On-Site Power                   | 215              |
| Microgrid Capability                                             | 6,960                             | Residential (Reliability)       | 124              |
| Electric Bill Management with<br>Renewables                      | 4,676                             |                                 | 6                |

#### Stacking Storage Value Stream – Illustrative only MISO endeavors to create markets based on services to support the grid not specific assets

| Value Stream          | Application                                          | Size (MWs) | Market Size<br>(\$) |
|-----------------------|------------------------------------------------------|------------|---------------------|
| Energy market         | LMP price differentials                              |            |                     |
| Ancillary market      | Regulation MWs                                       | 400        | \$<br>2,800         |
|                       | Ramping capability                                   |            | \$<br>-             |
| Capacity market       | Module E capacity credit in planning year            | 20         | \$<br>900,000       |
| Transmission planning | MISO approved transmission listing                   |            | \$<br>-             |
|                       | System Support Resource deferral                     |            | \$<br>-             |
|                       | Interconnection queue (direct)                       |            | \$<br>-             |
|                       | Subset of queue ie solar, wind                       | -          | \$<br>-             |
| Distribution side     | Distribution system upgrades, deferrals, substations |            | 7                   |

### When do we need these different storages? When vRE



Source - EPRI

Current Scope of MISO Operations - Storage must compete with conventional assets to provide services

- Generation Capacity
  - 180,711 MW (market)
  - 195,231 MW (reliability)
- Historic Peak Load
  - 127,125 MW (market)
  - 133,181 MW (reliability)
- Historic Wind Peak (November 19, 2015)
  - 12,613 MW
- 65,800 miles of transmission
- Footprint
  - 15 States
  - 1 Canadian Province
  - City of New Orleans

Source – MISO Communications Department

### What if

Energy mix in 2050 (Scenario 1)

0% 0%

7%

15%

- Scenario 1 No Coal by 2050, potential for storage?
- Scenario 2 No Nuclear by 2050, potential for storage?







Source - https://www.misoenergy.org/LMPContourMap/MISO\_All.html

MISO is going through a process to better accommodate energy storage

## **Current Status of Energy Storage**

- Evaluation of current market rules and applications is currently underway.
- Expectation that enhancements are technology-neutral and will allow the asset owner to maximize the value of the resource.
- Energy storage expected to remain part of MISO's study processes.

![](_page_11_Picture_4.jpeg)

### **Context for Energy Storage Dialogue**

### Why Now?

•Market participants are considering more options relative to generation portfolios in light of federal regulation and the overall economics of producing, buying and selling a MW

•Technology and market design has improved

•The energy landscape is changing

### What is Driving this Discussion?

- MISO has been approached by several Market Participants who are considering battery storage options for the future
- One of MISO's Market Participants has a project already under construction
- MISO has been working with stakeholders to harness new technology and integrate non-traditional resources

![](_page_12_Picture_9.jpeg)

## Philosophy on development of market resources

### Market products: technology neutral

- Capacity
- Energy
- Regulating reserve
- Spinning reserve
- Supplemental reserve
- Ramp products: Up ramp capability / Down ramp capability

### Market resources are defined based on characteristics

- Generator
- Demand Response Resource (DRR)-Type I and DRR Type-II
- Stored Energy Resource (SER)
- External Asynchronous Resource (EAR)
- Dispatchable intermittent resource (DIR)

![](_page_13_Picture_14.jpeg)

## Market resources and current eligibility for market products

|           | Energy     | Regulating<br>Reserve | Spinning<br>Reserve | Supplemental<br>Reserve | Ramp<br>Product | Capacity   |
|-----------|------------|-----------------------|---------------------|-------------------------|-----------------|------------|
| Generator | <b>Y</b> * | <b>Y</b> *            | <b>Y</b> *          | <b>Y</b> *              | Υ*              | <b>Y</b> * |
| DRR-I     | Y*         | Ν                     | Υ*                  | Υ*                      | Ν               | Y*         |
| DRR-II    | <b>Y</b> * | <b>Y</b> *            | <b>Y</b> *          | <b>Y</b> *              | Υ*              | <b>Y</b> * |
| SER       | Ν          | <b>Y</b> *            | Ν                   | Ν                       | Ν               | Ν          |
| EAR       | Υ*         | Υ*                    | Υ*                  | Υ*                      | Υ*              | Y*         |
| DIR       | Y*         | Ν                     | Ν                   | Ν                       | Y*              | Y*         |

\* Subject to qualification, offer status and commitment

#### Examples of other services not settled through market

- Reactive power supply and voltage control (transmission settlement)
- Blackstart service (transmission settlement)
- Primary frequency response (no compensation)

## **Key Areas/Issues for Consideration**

### Classification of resources/assets

- Examples
  - Generation/transmission asset, LMRs, non-transmission alternatives, non-generating resources similar to CAISO or new resource types

### • Tariff and Business Process Manual (BPM) considerations

- Examples
  - Use Limited Resource, SER, DRR2, Load Modfiying Resources (LMRs), Generators

### New market design enhancements and tools

- Examples
  - 2<sup>nd</sup> Automatic Generation Control (AGC), elimination of barriers including min. size requirement, manage state of charge

### Market compensation

- Examples
  - Pay for performance, fast ramp cost recovery, flexibility to choose cost recovery mechanisms, station power

### Long-term resource adequacy considerations

- Examples
  - Should be examined periodically, if reliability issues surface, or as penetration increases.

![](_page_15_Picture_16.jpeg)

## **Phase-In Approach for Energy Storage**

## Goal- Prioritize initiatives while balancing costs and benefits

- Near-term (2016-early 2017)
  - Relatively straight forward and low cost items
    - Require minor tariff and BPM clarification, and minimum system changes
    - Provide clear picture of how storage can participate in the near term

### Medium-term (mid 2017-forward)

- Items that have been prioritized through market roadmap
- Tie to other on-going initiatives and stakeholder discussions

### Long-term (2017-2019)

- Items involving complexity
  - Requiring broader regulatory or stakeholder discussion, or greater investment

![](_page_16_Picture_12.jpeg)

# What is needed to prepare for an active role of storages in 5 -10 years?

- Observe the international development, learn from first examples around the world
  - District of Columbia storage situation retail jurisdiction versus
    Federal (PJM) price signal
  - Texas/Oncor NoTres situation Decoupled market Distribution company cannot own Generation asset
  - MISO/IPL Is Battery a transmission asset? If so, was it identified as a solution in a public stakeholder process, to a need in the MISO transmission expansion plan (MTEP)?
  - Understand front of the meter versus behind the meter
  - How to treat a battery that acts as generator when dis-charging, and load when charging? In the market models.
  - How many hours does the battery serve a "market" need?
- Design and test different energy market instruments to give storages an economic chance, etc.

# What shall a utility and/or an energy department in Asia do concerning storage?

- Do some own pilot test with battery storages in grids for stabilization to get real experience with technologies and how to integrate them best
- Establish demand for different kind of discharge time storage capacities
- Establish Cost/Benefit of storages, etc.