

The Founders

Henrik Selstam, CEO

Business development and senior advisor. Master of Science in Engineering Physics at Chalmers, Sweden and several years of experience in setting up international organizations. With a background in the IT industry he established a small venture capital business investing in high-tech solutions in energy and fertilizing technology. The last 15 years he has been working very closely with Mr Fareid developing several industrial chemistry projects world-wide. Henrik's function in Waste4Fuel is business development and marketing.

Erik Fareid, CTO

Chemist with Masters Degree from the Norwegian Institute of Technology. He worked for a large Norwegian fertilizer company's research center for 10 years before he established himself as a self-employed with a focus on environmental initiatives in the industry. Broad experience in particular chemical industry and has among others led to commercial patents associated with cyanide production and CO2 reduction measures. Has been involved in several development and optimizing programs at a number of major players, among them Norsk Hydro.

WHATTO DO WITH THE WASTE?

Bury it!

Burn it!

Don't talk about it!

Waste is a resource in the wrong place

Typical Solid Waste Composition

MSW Waste Composition	Athens
Combustable wastes	81
Kitchen waste	46,0
Paper	20,0
Plastic	8,5
Textile	3,0
Yard waste	1,5
Rubber and leather	2,0
Non-combustable wastes	19
Bottle and glass	4,5
Metal	5,0
Ceramic and Stone	3,0
Misc	6,5
Total	100

WASTE4FUEL

Example Athens 2010

WTE Comparison

Market	MSW rate	MSW	Collect	Inerts	FE	NF	Water	Ener.	Heat	Price	Electr	Price	Income
	kg/cap/d	tpd			\$180	\$1000		MJ/kg	MW	USD	MW	USD	USD per year
Athens	1,1	110	90 %	15 %	2,6 %	0,3 %	30 %	21	8,4	0,02	4,5	0,2	8 728 134
Sofia	1	100	80 %	19 %	1,2 %	0,3 %	30 %	20	6,1	0,02	3,3	0,2	6 409 006
Montevideo	0,9	90	70 %	19 %	2,6 %	0,3 %	30 %	20	4,8	0	2,6	0,17	3 637 826
Katmandu	0,5	50	50 %	5 %	0,5 %	0,1 %	40 %	18	1,7	0	0,9	0,12	913 541

WASTE4FUEL

Refused Derived Fuel (RDF)

Sorting waste for Recycling (metals, plastic, paper)

Treatment of residues into pellets, briquettes

Gasification of residues for power production

RDF Production

Combining Recycling and Bio-reforming

RDF reforming: Total €137 per ton waste

PLASTIC FRACTIONS

- PE polyethylene
- LDPE low-density polyethylene
- HDPE high-density polyethylene
- PP polypropylene
- PS polystyrene

GASIFICATION

- Thermal decomposition of organic material through the application of heat in the absence of oxygen
- Well known technology in new package
- Conversion of Carbon based waste into Syngas (CO + H₂) by controlling supply of Oxygen and/ or steam at high temperature
- Syngas is a valuable product that could be used as fuel or converted into other high value products

GASIFICATION UNIT

final drying at 100°C

charcoal within air stream C+H2O→CO+H2 and C+O2→2CO then H2+1/2 ≈ O2 and 2CO+O2≈2CO2 in equilibrium

air in 🗕

peak temperature: 1100°C all free oxygen consumed hot char below the reach of free oxygen (685° to 885°C) C+H2O→CO+H2 and C+CO2→2CO hot, syngas out → RDF (around 25% water content)

ash

Drying Zone

minimal oxygen

Distillation and Carbonisation Zone

minimal oxygen

limited primary air Oxidation and Combustion Zone

> minimal free oxygen below here

hearth throat profile (one side)

minimal oxygen

Reduction Zone grate

WASTE4FUEL

GASIFICATION VS. INCINERATION

- Gasification is superior to Incineration in regards to Environmental Gases
- Gasification with Generator Set has a higher efficiency than Combustion with Steam Turbine
- Syngas is superior as a waste product since it could be used as fuel as well as raw material
- Gasification assumes waste assortment which improves recycling
- Gasification units could be built in modules and are relatively small. For Electricity units conventional gas generators could be used. Combustion uses complex Steam Turbine generators

EMISSION TABLE FROM THERMAL GASIFICATION

Emission	ppm	kg/h	tpy	kmol/h	Nm
Nitrogen	70 %	24 559	196 475	877.1	19 660
Oxygen	3 %	1 211	9 691	37.9	848
Water	11 %	2 571	20 565	142.8	3 201
СО	16 %	8 977	71 813	204.0	4 573
СО	50	1.77	14.1	0.063	1.41
NOx	35	2.03	16.3	0.044	0.99
SOx	1	0.081	0.6	0.0013	0.028
Hg	0.00048	0.000	0.0	0.0000	0.00001
Cd	0.0053	0.001	0.0	0.0000	0.0002
Pb	0.14	0.038	0.3	0.0002	0.004
Exhaust				1 261.8	28 282

Gas-to-Liquid Fuel technology

W4F Alkane Production

Step1: Syngas generation through reforming processes $(H_2 + CO)$

Step 2: W4F Gas-to-Liquid Fuel selective process

 $(2n + 1)H_2 + nCO \rightarrow C_nH_{(2n+2)} + nH_2O$

Fischer-Tropsch SPK (Synthetic-Paraffinic Kerosene)

W4F GTL REACTOR

- Manufactured in Sweden
- Proprietary catalyst, patent to be applied 2016
- Gas-to-gas conversion
- Dimensions to fit 40' container

Modular and semi-portable

PTD plastic-to-diesel

- Better use of plastic waste (CO₂ neutral)
- Shorter route to synthetic diesel
- Shorter return of investment low entry threashold
- In operation Q2 2016

PLASTIC REFORMING

CURRENT INSTALLATION

Responsible treatment of a valuable end product

