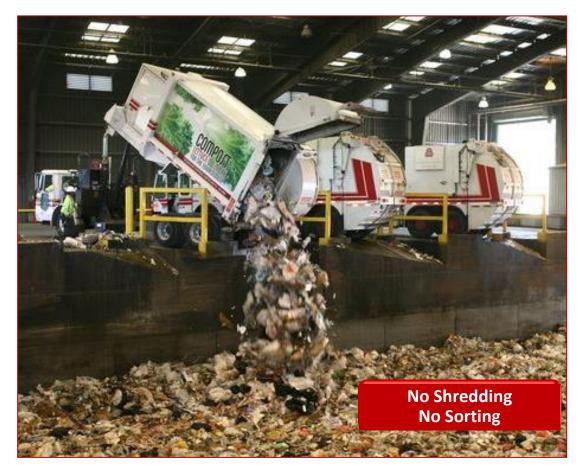
Dipl.-Ing. Heinrich Seul, CBE Bangkok.

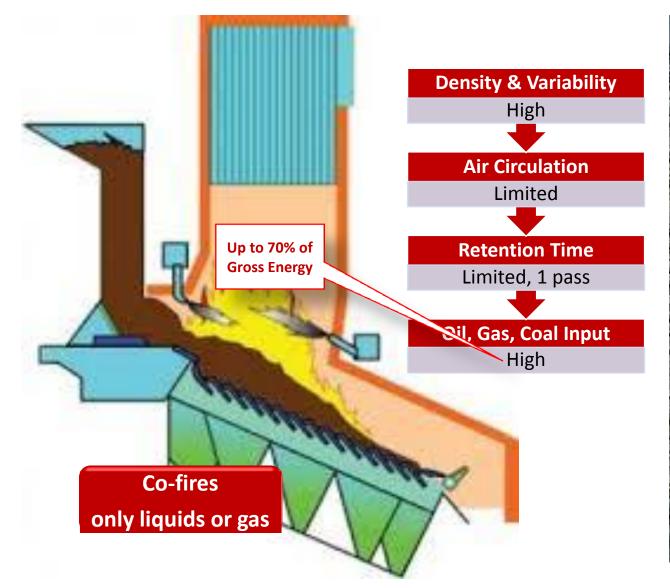
Refuse Derived Fuel (RDF):

Profitable Cherry Picking – leaving the Problems behind.

Massburn Incineration:


Burning Wet Bulk of Unknown Material with Fossil Fuel.

Once in the Pit – all Treatment Options gone.



One Pass Incomplete Combustion with Fossil Fuel.

Incinerator Wastewater Causes High Cost.

COD / BOD up to 300,000, Sulfur (Odor)

Heavy Metals, Polycyclic Aromatic Hydrocarbons, Bisphenol A

Two Ways to Clean Energy from Waste.



RDF Power Plant + MBT + Biogas

WtE Plant Rostock, Northern Germany
Residual MSW 600 tpd

CFB Massburn + Pre-Treatment

WtE Plant Quiaosi, Hangzhou, China Fresh MSW 800 tpd

EBS-HKW Rostock

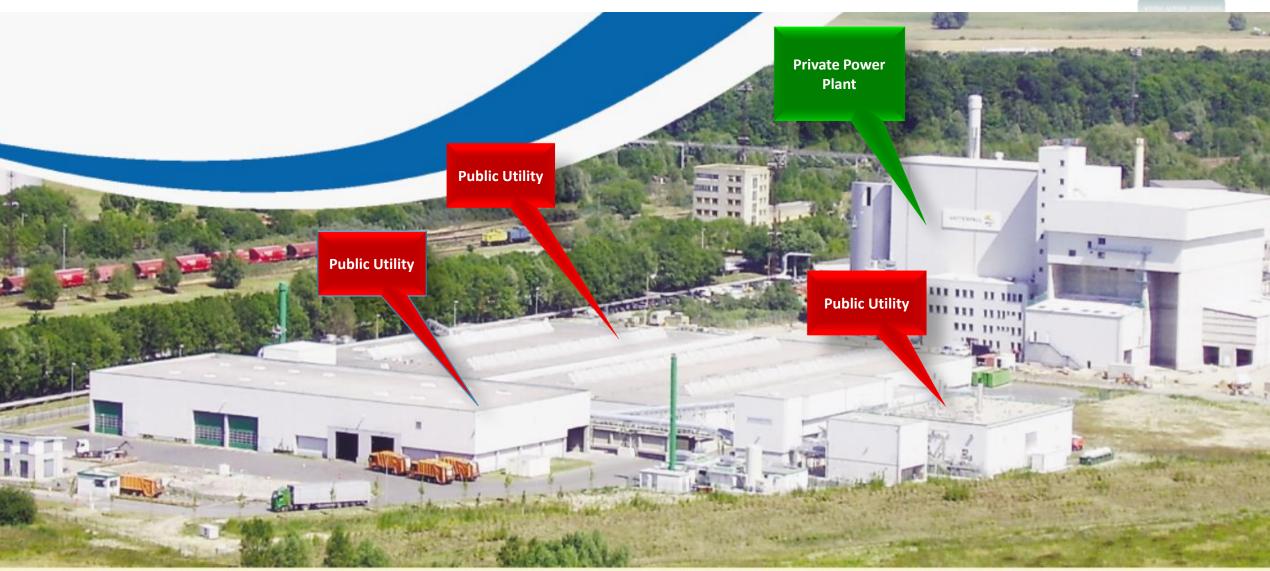
Location: MV

Operator: Vattenfall Europe New Energy GmbH Configuration: 1 X 20 MW CHP

Operation: 2010

Waste to Clean Energy – Rostock, Germany.

Integrated Plant Burning RDF, Managing Organics.



Model for Private Sector?

50/50: High CAPEX, Organic residues cause high OPEX.

Waste to Clean Energy – Hangzhou China.

Cixi Operations Parameters and Emissions.

Rapid growth of CFB WTE technology in China

Qunxing Huang^a, Yong Chi^a, Nickolas Themelis^b Andres Estrada^b.

a) State Key Laboratory of Clean Energy Utilization, Zhejiang University; b) Earth Engineering Center, Columbia University

item	Design value	Monitored
		value
Boiler output	33.9t / h	41.525 t / h
Waste incinerated	800t / h	834.20 t / h
Thermal efficiency	75%	77.1%
PM emissions	<80mg/Nm³	11.56 mg/Nm ³
SO2 emissions	<260mg/Nm ³	52.73 mg/Nm ³
NOX emissions	<400mg/Nm ³	144.32 mg/Nm ³
Dioxin	<1.0 ng TEQ/Nm ³	0.09650 ng
concentration		TEQ/Nm ³

Model for Private Sector?

Yes: Feedstock flexible, High Stabile Power, Emission Control.

Conclusion.

Private Sector Waste to Clean Energy Plants are feasible.

CHARACTERISTICS	KEY OBSTANCLES
CFB Powerplant with 2step pre-treatment	Concessions too short
No Fossil Fuel Net Power to Grid	Tipping fees too low
Residue Recycling / EU Standard Emissions	PPP too complex
Local employment & service for 30 years	few waste experienced law firms

Country	Thailand	Vietnam
Installed Capacity Wm _e	1 x 9.9	2 x 18
Waste received tpd	400	2000
CAPEX	40 M USD	100 MW USD
IRR	15%	19%
ROC	7	5
Project Lifetime	25 years	25 years