

Ricardo Energy & Environment

Part 2: Environmental impacts Phil White, MCIWM

efficiency health recyclingodour climate noise emissions location traffic change site

Waste Treatment – Recap of Approaches

Emissions to the Environment

Point source

- Single, identifiable, localised, easily measured
- To air, water or land
- Incinerator stack, gas engine exhaust, biofilter stack
- Point of consented discharge to water

• Fugitive

- Diffuse, generated as part of operation of the facility
- To air, water or land
- Uncontrolled landfill gas emissions
- Noise, dust, odour and litter from treatment sites

An Environmental Permit is required to operate a waste facility in the EU

- Limits emissions to acceptable level for the local context
- Continuous improvement driven by European Regulations

Ricardo Energy & Environment in Confidence

Environmental Issues for Waste Treatment Technologies

WtE and supporting technologies have potential impacts – that can be controlled

Activity	Noise	Odour	Dust	Flora/ fauna	Soils	Water quality/fl ow	Air quality	Climate	Building damage
MRF	×	×	×	×	×	××	**	-	-
Composting	xx	***	**	✓	× 🗸	××	***	×	-
MBT	××	***	**	-	-	××	**	×	×
Anaerobic digestion	**	* *	×	× 🗸	× 🗸	* *	**	×	×
Gasification/ pyrolysis	××	××	**	-	-	-	**	×	×
Incineration with pre- sorting	**	**	***	**	* *	**	***	*	×
Incineration	××	××	***	***	***	***	***	×	×
Landfill	***	***	××	*** 🗸	***	***	***	****	×
Waste transfer stations	**	***	×	-	-	**	×	~	-

\checkmark	Direct or indirect benefit	××	Potentially significant impact in some cases, but can be controlled	
-	No effect	* * *	Impact is normally controlled, but an issue at sites where design, engineering or operation falls below best practice	
×	Unlikely to be significant	****	An issue at all sites	

Controlling the Impacts

- EC reference documents on best available techniques (BAT) "BREFs"
- Main reference documents for European competent authorities issuing permits for installations
- 10 years old a long time for waste BAT
- Backed up by specific technical requirements for WtE in European regulations
 - Swathe of other regulations and guidance
- Effective enforcement is critical

Integrated Pollution Prevention and Control Reference Document on the Best Available Techniques for	EN Official Journal of the European Union	BASEL CONVENTION
Waste Incineration	DIRECTIVES	BASEL CONVENTION Controlling transboundary movements of hazardous wastes and their disposal
	DIRECTIVE 2010/75/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL	
	of 24 November 2010	
	on industrial emissions (integrated pollution prevention and control)	
	(Recast)	
	(Text with EEA relevance)	

Life Cycle Thinking

- Appropriate to consider life cycle environmental impacts (+ or -)
 - Quantify and compare the relative environmental burdens of equivalent integrated waste management systems across their entire life cycle
- Common to compare systems using Global Warming Potential (GWP)
 - Most widely understood impact
 - GWP over 100 years used in Kyoto Protocol
 - Assess greenhouse gas (GHG) emissions / avoided emissions ('offset')
 - Reported in tonnes of CO₂ equivalent emissions (+ or -)

Carbon in mixed waste includes both:

- Biogenic 'short-cycle' (e.g. food, wood) and
- Non-biogenic 'fossil' (e.g. plastics)

IPCC (Intergovernmental Panel on Climate Change) Guidance:

- Only account for fossil CO₂ emissions
- Net addition to atmospheric CO₂

- There are other impact categories e.g.:
 - Resource depletion potential (extraction / avoided use of minerals & fossil fuels)
 - Human toxicity potential

Measuring Comparable Environmental Impacts

Source; http://www.wrate.co.uk/

- UK Government life cycle assessment (LCA) model for waste systems
- 'WRATE' Waste and Resources Assessment Tool for the Environment
- Assess environmental impacts of waste management activities over their whole life
 - 'Gate' (discarded) to
 - 'Grave' (managed)
- Calculate impacts of all processes
 - Collection to final disposal
 - Construction and operation
- Offset against avoided burdens
 - Material and energy recovery

WRATE LCA Example

200,000 tonnes per year MSW

- Electricity offset
 - Philippines Primary Energy Supply Mix
 - Represents 'avoided energy use'

Waste Composition	(%)
Paper and card	24
Plastics	10
Metals	4
Combustibles	6
Glass	8
Organics	32
Other	16

Source: http://www.doe.gov.ph/policy-planning/key-energy-statistics-2010/1154-energy-mix

Example Scenarios

GWP Results – Global Warming Impact

GWP Results Discussion

- Simplistic assessment indicates:
 - Landfill gas utilisation gives significant benefit
 - WtE solutions significantly reduce life cycle CO₂ equivalent emissions
 - Energy recovery offsets use of fossil fuels
 - Recycling can give significant further gains
- Results are potentially conservative
 - 'Default' processes not pushing energy efficiency
 - Relatively low fossil generation in assumed energy mix
 - Higher baseline fossil fuel higher avoided CO₂
 - Relatively low recycling (e.g. plastics, aluminium)
- Environmental sustainability opportunity
- Triple win: Waste Treatment Climate Change Renewable Energy

250,<mark>000 tonnes</mark>/year CO₂ equivalent emissions

6.25 M tonnes CO₂ equivalent emissions (25-year facility life)