CCS Project Risk Management

Dr. Yuri Raydugin, P.Eng., M.B.A.

Principal Consultant Risk Services & Solutions Inc. Calgary, Alberta, Canada yuri.raydugin@risk-service.com

Asia Clean Energy Forum - CCS Deep Dive Workshop Asian Development Bank Manila, Philippines June 6th. 2016

Project Risk: Definition

Possible Deviations from Objectives

RISK SERVICES & SOLUTIONS Inc.™

Key Questions

Possible Deviations from CCS Objectives

Question #1: What Are Typical CCS Project Objectives?

Question #2: Where Deviations Might Come from?

Typical CCS Project Objectives & Baselines

CCS Objective	CCS Baseline			
System Capacity	Amount of CO ₂ Captured, Transported, Stored & Sold			
Incremental Oil	Incremental Oil Produced Due to CO ₂ -EOR (if applicable)			
СарЕх	Approved Capital Expenditure Budget			
ОрЕх	Net Present Value of Approved Operating Budget			
Profitability	Approved Level of Profitability			
Schedule	Approved Project Completion Date			
Environmental	No Negative Environmental Impact			
Health & Safety	No H&S Impact on Workers and General Public			
Reputation	Reputational Benefits; No Negative Impacts on Stakeholder Relations			
	e advectors Tree			

Lesson Learned #1: The Better CCS Objectives and Baselines Developed, the Smaller Room for Risks

Risk Breakdown Structure: Where Risks Might Come from?

	RBS Category	RBS Sub-Category	
	Regulatory & Stakeholders	Applicable Regulations Approval Process & Permits General Public	
	Organizational	Adopted Project Development Procedures Project Team Structure & Skills	
	Economics & Agreements	Commodity Market and Sales Agreements Incremental Oil (CO ₂ -EOR) Infrastructure in Place Funding, Grants and Investments Taxes and Credits Profitability & Phasing Acceptance Criteria	
	Project Development & Execution	Front End Loading Reservoir Characterization & Source – Sink Match EPC* of Capture, Transportation & Storage Capture – Transportation - Storage Integration Commissioning & Start-up	
RISK SER	Operations	Capture Operations Transportation Injectivity & Accepted Capacity CO ₂ -EOR Measurement, Monitoring, Verification (MMV) Seismic/ Tectonic & Cap Rock Integrity Asset Integrity	

Risk Management vs. Front End Loading (FEL)

Lesson Learned #3: Business Case (FEL1) and Alternative's Selection (FEL2A) Phases Are Most Critical Phases for Success of a CCS Project Rule #1: Project Moves to a Next Phase only When Objectives of a Previous Phase Met

Lesson Learned #2: Violating FEL Logic Is a Major Organizational Risk

Lesson Learned #4: Most of CCS Project Failures Stem from Mismatch of the Benefits and Carrots & Sticks (Pull vs. Push Mismatch)

Crucial Importance of Alternative's Selection (FEL2A) Phase

Very Low Dechum High Very High

Goal: Selection of a Project Alternative that Meets Two Criteria

- Most Optimal Economics, Geology, Technology, Location, etc.
 (Multiple Criteria Decision Analysis (MCDA*))
- Lowest Project Uncertainty & Risk Exposure**

Lesson Learned #5: It Is Much Easier to Manage Risks of a CCS Project Alternative That Is Least Risky First Place

* J. Choptiany, R. Pelot, J. Brydie, W. Gunter, An MCDA Risk Assessment Framework for Carbon Capture and Storage, Int. J. Decision Support Systems, vol. 1, No. 4, 2015

** Yuri Raydugin, Project Risk Management: Essential Methods for Project Teams and Decision Makers (2013), New York: John Wiley & Sons Inc.

Conclusion

Although Managing CCS Technical and Project Execution Risks Is Important Mutual Understanding and Exploitation of Industry's and Government's Drivers Are Most Crucial (Pull vs. Push Equilibrium)

Role of CCS Risk Management:

- Assist with Finding the Equilibrium as an Objective
- Manage Deviations from The Equilibrium
- Ensure Successful CCS Project Execution

