Deep Dive Workshop on Waste-to Energy Organized by ADB 7th June 2016

"Case study presentation on what Sri Lanka has done to date in relation to its INDCs and the impact WtE will have on mitigating GHG emissions"

> By J. A. T. Dilhani, SLSEA Sri Lanka Sustainable Energy Authority Sri Lanka

- Background
- INCDS targets
- Sector progress
- Impact on WtE in mitigation of GHG emission
- Challenges and recommendation

Background

Socio-Economic

Population20.2 MillionLand area65610 Km²No. of HHs4.7 MillionLiteracy Rate~ 93 %Per Capita GDP3600 US\$GDP Growth rate~ 8 %

Energy Sector

Main Sources of Energy:

Biomass, Petroleum, Coal, Large hydro, Other REs (Small hydro, wind, solar)

Total Consumption: 8.927 MToE

Industry	25.4 %
Transport	28.8 %
Domestic & Commercial	45.8 %

Electricity Sector

Total Installed Capacity:	3900MW
Peak Load:	2200 MW
Gross Generation:	11,800 GWh
HH Electrification:	98 %

Generation by Source						
-	Hydro	1	30)%	, 0	
-	Thermal	1	60)%	, 0	
-	NRE	:	1()%	, 0	
NRE	<u>Capacitie</u>	<u>es</u>				
-	Small hyd	dro		1	290	MW
-	Wind			:	100	MW
-	Solar			1	10	MW
-	Biomass			:	20	MW

- □ Country's total GHG emission represents <0.1% of global emissions
- **Current per capita emission is 0.6tCO2e.**
- Country target : cumulative reduction 30 million tCO2eq for the period 2015 – 2030.
- **Emission reduction from Energy sector:**

Reduce 20% GHG emission (approximately 36,010.2 Gg) by 2030 Unconditionally 4% (~ 7,202.04 Gg) (BAUs) Conditionally 16% (~ 28,808.16 Gg) (BAUs)

Sector targets

Waste collection rate

Share of green fuelled public transport

NCRE strategy

Grid Electricity

✓ The share of new REs: 10% by 2016 and 20% by 2020.

Waste Collection and Source Separation 2012 – 2018 targets

Emerging Municipal Solid Waste Management Scenario 2011 – 2018

NCRE progress

Rooftop 28 MW solar PV installations with a combined capacity of 13.3 MW by end of 2014.

Waste sector progress

Status	No.	Capacity (MW)
Processing* stage	12	120.4
PA	1	10.0
EP	2	20.0
Total	15	150.4

*Note : Initial stage; including request for grid proposal from CEB, recommendation for prefeasibility study etc.

Practical Achievements

1st grid connected biogas plant in SL – 80 kW 2012

Location : Gampaha, Wathuragama Type : Poultry farm Waste input : 5 ton/day poultry manure Capacity : 500 m3 Daily biogas production : 1000 m3 Project cost : LKRM 33

1st sanitary landfill – Dompe 20,000 tons capacity, for 15 years

Domestic Biogas units -5000- 6500

Medium Scale Composting Facility

	No of	No of Designed mposting Capacity Facilities Mt/Day	Designed Present Capacity operational Mt/Day capacity	% of waste is used for composting					
	Composting Facilities			Present Condition	2014	2015	2016	2017	2018
Implementation of VI step "									
Use Waste as Resources"	21	210	128 (60%)	5%	7.5%	8.7%	9.5%	10.5%	11%
Composting and Bio				370					
methanization									

- Capacity Building of existing facility
- Improving present waste intake
- Optimizing of Diverting perishable waste
- □ Improving compost of quality
- Establishing new composting facility

CHALLENGES

Priority Interventions

- Concessionary financial support (Financial)
- Subsidy reforms (Technical)
- FIT for other RE technologies such as Solar PV, Concentrated Solar Power (Technical and capacity Building)
- Technical and financial barriers for W2E
- Study on Geothermal, Ocean Thermal Energy Conversion, and Wave Power (Technical & Capacity Building)
- Biomass collection, storage and clearing houses (Financial)
- Pump Storage (Financial & Technical)

Acknowledgements for the organizers of ACEF 2016

Thank you !