ACEF 2016

Practical approach in deploying sustainable hybrid renewable energy systems in small isolated islands

Mukhtor Khamudkhanov
Principal Energy Specialist, SAEN, ADB

Hybrid RE Systems Deployment in Small Islands of Maldives and Sri Lanka

- Regional TA 7485: pilot hybrid systems (wind and/or solar and efficient diesel generation coupled with lithium-ion batteries) commissioned in Maldives (Rakeedhoo and Dhidhoo islands) and Sri Lanka (Elevaithivu Island)
- Replication in three islands in the Jaffna area of the Northern Province (Nainathivu, Analaitivu and Delft) of Sri Lanka

Major Stages and Challenges in Deploying Sustainable Hybrid RE Systems

- Required data collection and analysis
- Selection of a suitable business model
- Optimal design, technical architecture and configuration
- Addressing capacity building
- Operation, maintenance and monitoring

Required Data Collection and Analysis

- Electric demand assessment (average daily energy demand, annual peak power, daily load profile and seasonal variations)
- Solar resource evaluation
- Wind resource evaluation
- Existing infrastructure, land/space, logistics, etc.

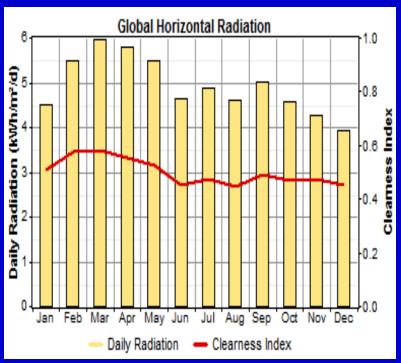
Elevaithivu Island

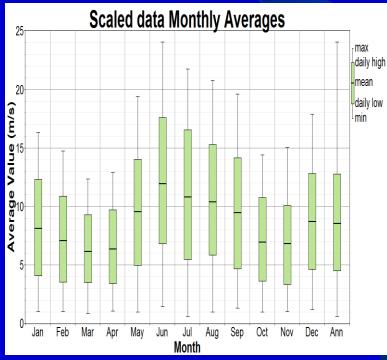
Initial Status

Installed generation old 100kW and 25 kW diesel gensets.

Population	800
Measured peak (kW)	26
Energy consumption (kWh/day)	180
Specific fuel consumption (L/kWh)	0.58

Estimated CO₂ emissions including for demand growth (kg/year) 101,563

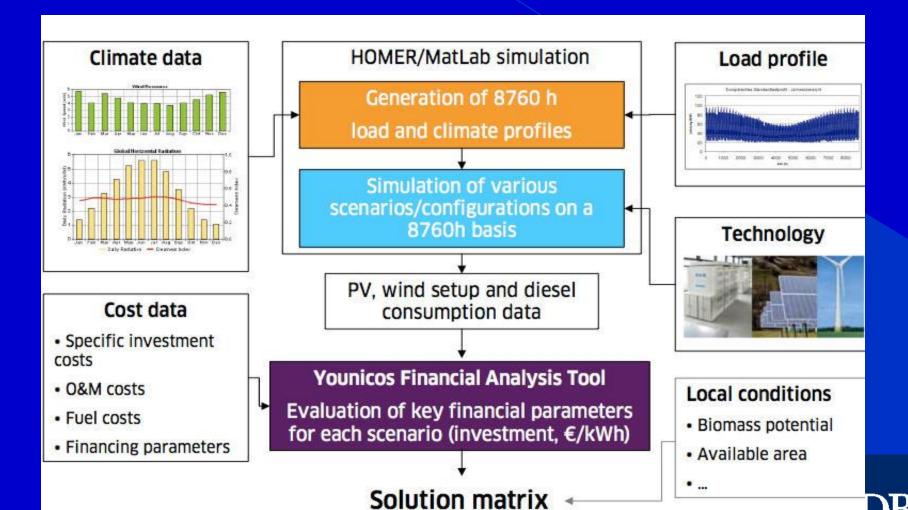




Wind and Solar Resources in Elevaithivu Island

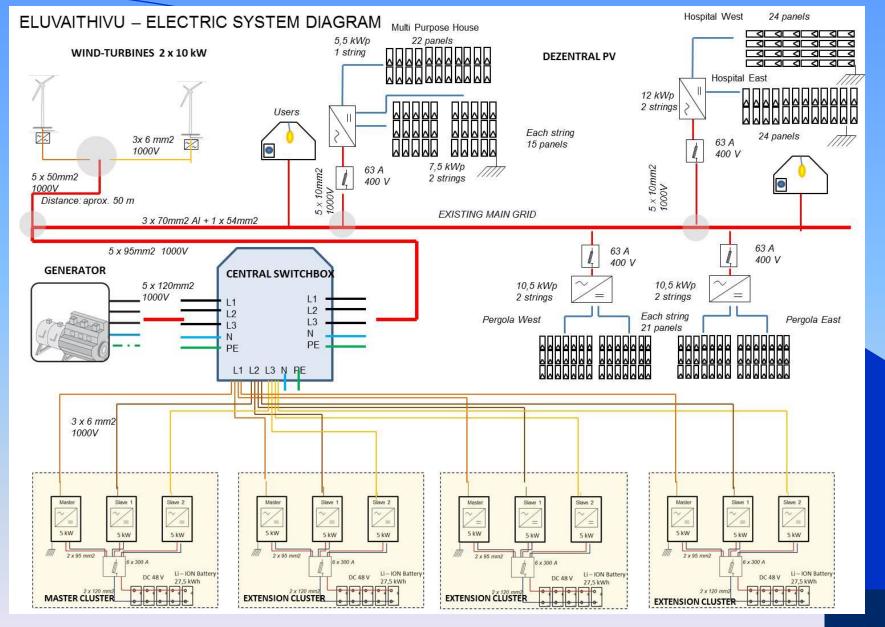
Solar: Annual average 4.93 kWh/m2/day

Wind: Annual average 6.5 m/s at 12 m height

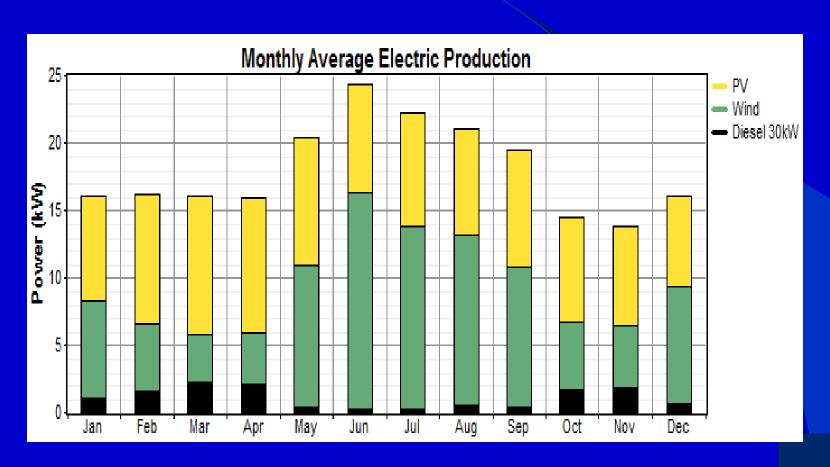

Selection of Suitable Business Model

- Utility based
- Private sector operator based
- Community based
- Hybrid (possible combination of other models)

Optimal Design, Technical Architecture and Configuration


- Establishing optimum generation mix
- Defining appropriate technical architecture (voltage, bus line arrangements, etc.)
- Centralized or decentralized architecture
- Optimal configuration

Design Approach



Configuration in Elevaithivu Island

Component	Data
Electricity Demand	73 MWh/yr
Solar Power	43.5 kWp
Wind Power	18 kW
Storage Capacity	126 kWh
Diesel Power (New)	30 kW
Diesel Power (Existing old – for back up)	125 kW
Reduction in Levelized Cost (\$/kWh)	From 1 to 0.37

Elivaithuvu Island

Capacity Building, Operation and Maintenance

- Personnel training
- Community awareness
- Manuals/Operation and maintenance documentation
- Periodic maintenance/Maintenance plan and schedule
- Monitoring

Planned Replication in Other Small Islands in Sri Lanka (2016-2018)

Component	Analaitivu Island	Delft Island	Nainativu Island
Solar PV	200 kWp	400 kWp	250 kWp
Wind	60 kW	160 kW	-
Battery Storage	200 kWh	400kWh	300 kWh
Inverter	200 kW	400 kW	250 kW
Diesel Genset 1	100 kW	200 kW	150 kW
Diesel Genset 2	100 kW	350 kW	300 kW

Thank You