

CTC GLOBAL

How the choice of transmission conductor can reduce greenhouse gas emissions.

What is the scope of the impact?

Complete conversion of the US grid to efficient conductor would eliminate 44 million metric tons of CO_2 due to the reduction of line losses by 20 to 40% compared to ACSR conductors of the same diameter and weight under equal load conditions:

(1)30% reduction of

- (2) 6% line losses typical of ACSR conductor,
- (3) saves or adds 71.8 million MWh of power generation,
- (4) which at an average of I.37 pounds of CO₂ per kWh,
- (5) results in 44 million metric tons reduction of CO2 per year, or alternatively,

(6)The effective generation/delivery of 8,199 MW of power for consumers.

Potential Impact of US Conversion to Efficient Conductors							
US Consumption	3,990,000,000,000	kWh					
Transmission Line Losses (6%)	239,400,000,000	kWh					
30% Reduction with ACCC	71,820,000,000	kWh					
MWh Equivalent Savings (Annual)	71,820,000	MWh					
Generation Equivalent Delivered	8,199	MW					
annual economic value @ \$50/MWh	\$3.591	billion					
US Average CO2 Emmision	1.372	lbs/kWh					
Annual CO2 Reduction with ACCC	44,688,000	Metric Tons					

CTC GLOBAL

Technical aspects of efficiency

- The more aluminum in a conductor the better
- The higher the %IACS of the aluminum the better
- Annealing improves conductivity and resistivity
- Conductivity and Resistivity are correlated

	Conductor Properties	Co	onductive Stra	ands	Core Strands				
Code Name	Conductor Description	aluminum type	tensile strength	conductivity (%IACS)	type	tensile strength	modulus	CTE	
AAC	All Aluminum Conductor	1350-H19	24- 28 ksi	61.2	1350-H19	24-28 ksi	10 msi	23.0	
AAAC	All Aluminum Alloy Conductor	6201-T81	46-48 ksi	52.5	6201-T81	46-48 ksi	10 msi	23.0	
ACAR	Aluminum Conductor Al Alloy Reinforced	1350-H19	24- 28 ksi	61.2	6201-T81	46-48 ksi	10 msi	23.0	
ASCR	Aluminum Conductor Steel Reinforced	1350-H19	24- 28 ksi	61.2	coated steel	200-220 ksi	29 msi	11.5	
AACSR	Aluminum Alloy Conductor Steel Reinforced	6201-T81	46-48 ksi	52.5	coated steel	200-220 ksi	29 msi	11.5	
ACSS	Aluminum Conductor Steel Supported	1350-0	~8.5 ksi	63.0	coated steel	220-285 ksi	29 msi	11.5	
ACIR	Aluminum Conductor Invar Reinforced	Al-Zr alloy	23-26 ksi	60.0	invar steel	150 - 155 ksi	22 msi	3.7	
ACCR	Aluminum Conductor Composite Reinforced	Al-Zr alloy	23-26 ksi	60.0	metal matrix	190 ksi	32 msi	6	
ACCC	Aluminum Conductor Composite Core	1350-0	~8.5 ksi	63.0	carbon hybrid	310-360 ksi	16-21 msi	1.6	

Factors in selecting conductors

- Any given set off towers has limits to weight, diameter, and sag clearance of the conductor whether a new line design or replacement of conductor on existing towers.
 - Weight impacts tension on towers
 - Tension limited by towers and crossarms
 - Diameter mostly impacts wind and ice loads
 - Sag clearance at temperature (and ice/wind load)
 - Operating amps establishes expected temperature and sag
- For comparison it is fair to keep upper limits on design factors for towers/conductors.

Reconductoring Kumbotsu - Danagundi Transmission Line

Reconductoring: Kumbotsu – Danagundi I32vVT/L

- Objective: Deliver 600A while maintaining clearance
- Large increase could not be handled by ACSR Wolf (400A)

Project Requirements (Limitations)

- Use existing towers with only maintenance repairs
- Meet sag requirement of 10 meters (current sag allowance for ACSR Wolf)

Project Analysis

- Select best performance options from ACSR, ACSS, STACIR, AAAC and ACCC
- Compare conductor cost based on sizing of capacity and sag requirements

Making a project comparison with CCP[™] Software

- Nine areas for inputs, conductor selection and outputs.
 - I. Environment
 - 2. Line factors/Cost factors
 - 3. Sag calculation factors
 - 4. Ice/wind conditions
 - 5. Conductor selection
 - 6. Temperature and line loses
 - 7. Sag and tension results
 - 8. Visual sag and limits
 - 9. Efficiency and emissions
- 2. All yellow cells are inputs, can enter own value or choose from dropdown list
- 3. Clearly demonstrates how conductor selections impact a project.

Initial T/L operating condition and target

350

30

10.0

Ruling Span (m)

Initial Sagging Temperature (°C)

Maximum Allowable Sag (m)

Existing Line Condition

 In # 2, we see the minimum up-rating target of 600 amps (137 MW) which will be the basis for conductor selection and performance comparison.

2 Baseline capacity of ACSR Wolf

ACSR Wolf is the basis for current capacity and limitations of the transmission line

2 ACSR Wolf establishes sag/tension limitations

ACSR Wolf establishes the limits for installation tensile loads on the towers and the maximum sag of the conductors

Tension needed to meet sag clearance (13.8kN = 1.4MT)

Because the towers were built for ACSR Wolf, we must only consider comparison of conductors that are very close to it's weight and diameter, and can be installed to meet the ground clearance.

ACSR Wolf 158.1 mm² aluminum 18.13 mm diameter 726 kg/km 13.8 kN installed tension

Weight (726 kg/km)

However, since ACSR Wolf cannot meet 600 amps, we will use these parameters to look at larger ACSR conductor.

3 ACSR Bear meets amps target but weighs 66% more

CTC GLOBAL	Kumbotsu - Danagundi: ACSR OPTIONS					DNS				
Conductor information	Base Conductor		Conductor #1		Conductor #2		Units	Language V	oltage 1	уре
Туре:	ACSR		ACSR		Select Type		Metric	English	AC	CCP v 2.3.2
Size (mm* Al - Code Word):	158 - WOLD		265 - BEAR		0 - Select Size		Environr	nental Input		
Aluminum Area (mm²):	158.1	-	264.5		0.0		1029.6	Sun Radiation	(W/m²)	Set Default
Diameter (mm):	18.130		23.450		0.000		35	Ambient Temp	. (°C)	Environmental Inputs
Rated Strength (kN):	69	G			0		0.61	Wind (m/sec)		
Weight (kg/km):	726.0		1,213.0		0.0		100	Elevation (m)		
DC Resistance at 20°C (ohms/km):	0.17875		0.10685		0.00000		0.5	Solar Absorptiv	vity	
AC Resistance at 25°C (ohms/km):	0.18285		0.10970		0.00000		0.5	Emissivity		
AC Resistance at 75°C (ohms/km):	0.21881		0.13110		0.00000		90	Wind Angle (de	eg.)	
							0	Azimuth of Line	e (NS=0, E	W=90)
Conductors per phase:	1		1		0		9	Latitude (neg =	South)	
Circuits:	1		1		0		February	Month		
Ampacity (A) at Temperature (°C): 70	416	70	573	0	#VALUE!	I I	15	Day of Month		
Ampacity (A) at Rated Operating Temp (°C): 75	449	75	619	###	#VALUE!		12	Time (24 hrs.)		
Ampacity (A) at Maximum Temp (10): 100	577	100	801	###	#VALUE!		Clear	Atmosphere		
Line Loss (Based on Inputted Peaking Operating	Amps Value)					Load and Generation Cost Assumption				sumptions
Steady-State Temperature (*C) at Peak Ampacity:	105		73		#VALUE!		10.0	Line Length (ki	m)	
Resistance at Peak Operating Amps (ohm/km):	0.24074		0.13017		#VALUE!		132	Voltage (kV)		
First Year Line Losses (MWh):	6,548		3,541		#VALUE!		600	Peak Operatin	g Amps	
ACSR 158 - WOLD - Reduces First Ye	ar CO₂ Generated b	у (MT):	-273		#VALUE!	ĮŲ	50%	Load Factor		
ACSR 158 - WOLD - Reduces First \	'ear Line Losses by	(MWh):	-3,007		#VALUE!		29%	Loss Factor		
ACSR 158 - WOLD - Reduces Fir	st Year Line Losses	Бу (%):	-85%		#VALUE!		137	Peak Power pe	er Circuit (N	4W)
ACSR 158 - WOLD - Reduces First Ye	ar Line Losses by (\$	(Year):	-150,370		#VALUE!	I I.	3	Phases/Circuit		
ACSR 158 - WOLD - Line Loss Savings pe	r meter of Conducto	r (\$/m):	-5.01		#VALUE!		50	Cost of Energy	Generatio	on (\$/MWh)
			[]			I.	0.200	CO ₂ (kg/kWh)		
ACSR 158 - WOLD - Redu	ces 30 year line loss	s Бу (\$):	-4,511,085		#VALUE!		0%	Load Increase	Mear	
ACSR 158 - WOLD - Reduces 30 ye	ar CO₂ generation b	уу (MT):	-18,044		#VALUE!					

ACSR Bear can just meet the increased 600 operating amps and 800 amp target with a weight increase of 66%. (1,213 vs 726)

3 ACSR Bear cannot be installed on current towers

ACSR Bear greatly exceed the constraint on installed tension and maximum allowable sag

CTC GLOBA

4 ACSS conductors meet performance target

CTC GLOBAL	Kumbotsu - Danagundi: ACSS/T¥ and ACSS r				round wire (OPTIONS		
Conductor information	Base Conductor		Conductor #1		Conductor #2	Units	Language Voltage	Туре
Туре:	ACSR		ACSS/TW		ACSS	Metric	English AC	CCP v 2.3.2
Size (mm² Al - Code Word):	158 - WOLD		170 - ORIOLE		170 - ORIOLE	Environ	mental Input	
Aluminum Area (mm²):	158.1		170.5	2	170.5	1029.6	Sun Radiation (W/m³)	Set Default
Diameter (mm):	18.130		17.602		18.821	35	Ambient Temp. (*C)	Environmental Inputs
Rated Strength (kN):	69		66		66	0.61	Wind (m/sec)	
Weight (kg/km):	726.0		783.2		783.2	100	Elevation (m)	
DC Resistance at 20°C (ohms/km):	0.17875		0.16010		0.16010	0.5	Solar Absorptivity	
AC Resistance at 25°C (ohms/km):	0.18285		0.16293		0.16375	0.5	Emissivity	
AC Resistance at 75°C (ohms/km):	0.21881		0.19580		0.19678	90	Wind Angle (deg.)	
						0	Azimuth of Line (NS=0, B	EW=90)
Conductors per phase:	1		1		1	9	Latitude (neg = South)	
Circuits:	1				1	February	Month	
Ampacity (A) at Temperature (°C): 70	416	70	437	70	443	15	Day of Month	
Ampacity (A) at Rated Operating Temp (°C): 75	449	200	915	200	932	12	Time (24 hrs.)	
Ampacity (A) at Maximum Temp (°C): 100	577	250	1,023	250	1,043	Clear	Atmosphere	
Line Loss (Based on Inputted Peaking Operating	Amps Value)					Load an	d Generation Cost As	ssumptions
Steady-State Temperature (*C) at Peak Ampacity:	105		99		97	10.0	Line Length (km)	
Resistance at Peak Operating Amps (ohm/km):	0.24074		0.21159		0.21129	132	Voltage (kV)	
First Year Line Losses (MWh):	6,548		5,755		5,747	600	Peak Operating Amps	
ACSR 158 - WOLD - Reduces First Ye	ear CO ₂ Generated b	у (MT):	-72		-73	50%	Load Factor	
ACSR 158 - WOLD - Reduces First \	′ear Line Losses by I	MWh):	-793		-801	29%	Loss Factor	
ACSR 158 - WOLD - Reduces Fir	st Year Line Losses	by (%):	-14%		-14%	137	Peak Power per Circuit (I	MW)
ACSR 158 - WOLD - Reduces First Ye	ar Line Losses by (\$	Year):	-39,635		-40,048	3	Phases/Circuit	
ACSR 158 - WOLD - Line Loss Savings pe	r meter of Conducto	(\$/m):	-1.32		-1.33	50	Cost of Energy Generati	on (\$/MWh)
						0.200	CO₂ (kg/kWh)	
ACSR 158 - WOLD - Redu	ices 30 year line loss	Бу (\$):	-1,189,054		-1,201,428	0%	Load Increase/Year	
ACSR 158 - WOLD - Reduces 30 ye	ear CO2 generation b	y (MT):	-4,756		-4,806			

ACSS/TW Oriole and ACSS Oriole meet capacity requirements with only slightly higher weight than ACSR Wolf

4 Sag/tension limits ACSS/TW to 600 amp target

ACSS/TW Oriole and ACSS Oriole are sag limited, even when the installed tension exceeds the criteria by 15%

Tension needed to meet sag clearance

CTC GLOBAI

Relative conductivity CO2 generation

	ACSR	STACIR	ACSS/TW	AAAC	ACCC
Aluminum Area mm2	158.1	159.3	170.5	239.5	222.3
%IACS	61.20%	60%	63%	52.50%	63%
Relative conductivity	97	96	107	126	140
Resistance at 600 amps (ohm/km)	0.2407	0.2259	0.2116	0.1739	0.1578
Annual line losses (MWh)	6,548	6,146	5,755	4,713	4,293
CO2 Generated (MT)	1,310	1,229	1,151	943	859
Reduced CO2 versus ACSR (MT)	0	80	159	367	451
Reduced CO2 per KM (MT)	0	8	16	37	45
% Reduction CO2 Generation	0%	6%	12%	28%	34%

 With all other design conditions the same on this short (10km) 132kv line, conductor choices can reduce CO2 generation by 6 to 34%, versus an overloaded ACSR Wolf.

Bigger lines equals bigger results

120 Circuit Mile AEP Project Example

345 kV Line – Replace ACSR with ACCC

- Increased line capacity by 75% with 625 amp emergency reserve
- Reduced line losses by 30%
- Line loss reduction saves 141,580 MWh / year (=\$7.1M @ \$50/MWh)
- Emission reductions saves 57,798 Metric Tons CO2 / year
 - This equates to removing over 12,000 cars from the road
 - Line loss reduction also frees up over 16 MW of generation

Notes:

Double bundled conductor. Load factor Assumption = 34% US National Average CO2 = 1.372# / kWh. (1 car = 4.75 MT CO2 / year)

Regional Impact in South East Asia

I8 million MT reduction of CO2 every year

Country	MWh/Year*	CO ² MMT**	5% losses (MWh)	30% saving	CO ² reduction
Indonesia	216,200,000	477 MMT	10,810,000	3,243,000	7.2 MMT
Thailand	164,800,000	258 MMT	8,240,000	2,472,000	3.9 MMT
Malaysia	131,600,000	216 MMT	6,580,000	1,974,000	3.2 MMT
Vietnam	157,480,000	146 MMT	7,874,000	2,362,200	2.2 MMT
Philippines	76,000,000	87 MMT	3,800,000	1,140,000	I.3 MMT
Myanmar	7,144,000	13 MMT	357,200	107,160	0.2 MMT
Cambodia	991,000	5 MMT	49,550	14,865	0.1 MMT
Laos	12,240,000	3 MMT	612,000	183,600	0.05 MMT
TOTAL	766,455,000	1,205 MMT	38,322,750	11,496,825	18 MMT

* Source: Worldbook: Statistical Review of World Energy 2014, and EIA – International Energy Statistics 2014

** Source: Enerdata 2013

I-2% lower GHG generation

- Using or changing to efficient conductors reduces line losses by I – 2 % and CO2 generation by the same amount.
- Renewable generation benefits through 1-2% more delivered power.

 Better efficiency and better return on capital projects go hand in hand (it is not double counting), so efficiency also generates more profitability for minimal capital cost increase.