Energy Efficiency Insurance

Global & Indian scenario

International Energy Efficiency Insurance Product Scenario

Reluctance of consumers to invest in capital intensive energy eniciency s

- 1. Financial risk posed by the uncertainty of achieving energy savings.
- 2. Lack of technical competence to verify project design, technologies installed etc.
- 3. Possibility of disputes with ESCO companies over achieved savings.
- 4. Few financing options available due to technical incompetence of banks to assess investment in this space.

Insurer: Energi; Reinsurer: Hannover RE

Geography: USA, Canada and Puerto Rico

4. Energy Savings Warranty

Energy Savings Insurance (Mexico): Key stakeholders

IMPLEMENTATION AUTHORITY	The Inter-American Development Bank (IDB) is supporting the implementation of the program by extending a credit line to the local national development bank FIRA. The IDB is also responsible for setting up verification protocols, development of standard contracts, identification of appropriate insurance instruments and carrying out training activities.
INSURER	Local insurance companies issue the insurance to the eligible ESCOs.
BANK	After the loan request passes through an initial credit review, the project proposal is passed on to FIRA - (Fideicomisos Instituidos en Relación con la Agricultura; is an agricultural bank). FIRA on receiving the project proposal requests the verifier to validate the ESCO and the project details. If the assessment by the verifier is positive, credit lines are extended by FIRA to the local banks which further disburse the credit to the building owners covering up to 80% of the upfront investment project cost.
VERIFIER	The National Association of Normalization for the Electric Sector (ANCE) is the verifier for the program. The verifier is also responsible to resolve any disputes that may arise between the ESCO and the building owner. The M&V related costs are borne by public funds.

Energy Savings Insurance (Mexico): Operational Modalities

Product Implementation Timeline

Exclusions in product design

Areas or factors not covered by the insurance Product are explicitly mentioned in the term documents. These factors are known as Exclusions. Exclusions are made in the product policy to effectively define the risks covered and to keep the premium low. Some of the observed exclusions in most international Energy Efficiency Insurance Products are:

Addition of new end uses that increase energy use: This clause prevents any claims due to the addition of end uses. Contracts should have a provision for the adjustment of the baseline if new end uses are installed or removed.

Sabotage/misuse/vandalism of the installed technologies.

Physical damage to equipment: Physical damage or wear and tear is usually attributed to lack of maintenance by the responsible party.

Inadequate maintenance: The responsibility for maintenance should reside with the ESCO. The requirements for maintenance should be stipulated in the contract.

Changes in energy prices: Contracts should have a provision for the adjustment of the baseline if the energy prices change.

Failure or malfunction of data acquisition systems.

Highlights- Indian Energy Efficiency Scenario

The overall size of energy efficiency market is estimated to be INR 74,000 crores Source: EESL

Recently, World Bank has pegged India's energy efficiency market at INR 1.6 lakh crore, four times the INR 44,000 crore in 2010 against the backdrop of the success of the government's UJALA scheme to distribute LED bulb **Source: World Bank**

Highlights- Indian Energy Efficiency Scenario

To gauge the Indian energy efficiency scenario, desk research and stakeholder consultations were conduncted:

BEE empaneled ESCOs were contacted for soliciting their views on the current energy efficiency scenario in India.

Responses were / are being received by:

- Carrier
- DESL
- Megawatt Solutions Pvt. Ltd.
- Energy Audit Services Ltd.
- ► RE Cube Energy Pvt. Ltd.

Key Findings:

- 1. ESCOs in India do not specialize in multiple interventions. Most ESCOs provide services for 1-2 technologies.
- 2. ESCOs operate according to 2 savings models:
 - Shared savings: ESCO invests. Savings shared between ESCO (85%) and building owner (15%).
 - Guaranteed energy savings: Building owner invests. Complete savings retained by the building owner.
- 3. No insurance framework exists for energy efficiency savings.

Identified Risk Factors for the Interventions

Illustrative Product Framework for Indian Market

Risk Computation Model- Sample Scenario

For developing an EE insurance product, a risk computation model needs to be developed. The model should quantify the various risks that can impact energy savings in a EE intervention. Based on the on-site scenario, the user can populate the matrix for computation.

For any risk factors, the following parameters can be affected:

- Savings from the intervention
- Cost of the intervention
- Cost and Savings

Risk percentage for any particular factor can be calculated as:

Impact on Payback X Weightage of Parameter = Risk Percentage of Factor or Parameter

Total Project Risk = \sum Risk Percentage of Factors

Cates CENARIO	arameter	User Selection	Risk Output on the Basis of User Selection	Parameter Impacted on the basis of user input	Percentag e change on the Parameter Impacted
Supplier Quality Certification	Complianc e with India's LED Standards	Yes No	Low Risk High Risk	Cost Cost	<u>0%</u> 5%
	LM80 Certificatio n	Yes No	Low Risk High Risk	Cost Cost	0% 5%
Post implementati on service	O&M Responsibi lity	ESCO Building Owner	Low Risk High Risk	Savings Savings	0% -10%
ESCO Reputation	ESCO Reputation - Crisil Grading	Grading 1 Grading 2 Grading 3 Grading 4, Grading 5 and	Low Risk Low Risk Low Risk High Risk	Savings Savings Savings Savings	0% 0% 0% -10%

Sample Methodology for Base Premium Calculation

Methodology for Base Premium Calculation

The following is the calculation methodology for premium calculation:

Assumptions / Input parameters:				
S. No.	Parameters	Rationale		
1	Internal Rate of Return	To judge profitability for the insurance company, as normal premium calculation methodology is not		
	(IRR) for Insurance	applicable for the case. (Due to unavailability of historical data to assess probabilistic occurrence)		
	Companies			
2	Risk Insured/project	To determine cash outflow (risk coverage) for the insurance companies.		
3	% of companies claiming	To aggregate total time bound cash inflows for the insurance companies.		
	for coverage			
4	Tenure of the insurance	To determine total number of premiums, thus giving cash inflow timeline for the insurance companies.		
	contract			
5	Premium frequency/year	To determine total number of premiums, thus giving cash inflow timeline for the insurance companies		

Output Parameters				
S. No.	Parameters	Calculation methodology		
1	Base Premium	Cash outflow may be taken exactly at the mid of the insurance tenure and cash inflow may be		
		considered based on premium frequency/year. A reference start date has to be considered.		
		Based on the input IRR, NPV of cash outflows and inflows calculated, final NPV can ne calculated based		
		on the % of companies claiming for premium.		
2	Final Premium	Based on the risk factor calculated in the model, premium charges are imposed on the base premium.		
3	Premium Schedule	Based on the tenure of contract and premium frequency, premium schedule be computed.		

