

Planning for Universal Access in Eastern Indonesia Asia Clean Energy Forum 6 June 2017

Current electrification ratio

Elements of an electrification paradigm

- 1. Accuracy
- 2. Timeliness
- 3. Coverage
- 4. Granularity
- 5. Optimality (least-cost)
- 6. Funding requirements

What infrastructure... ...should be built where...and how much it will cost

- Carried out with PLN for provinces of Papua and West Papua
 - Approx. 459,000 km2 (bigger than California, smaller than Spain)
 - Approx. 4.3 million inhabitants
- Supported by ADB and AFD
- 8 months to carry out

1. Rooftop Tagging

- Manual identification of households
- Machine learning also possible
- Issues
 - Low resolution
 - Cloud cover
 - Old imagery
- Three imagery sources
 - Google Earth
 - Bing Maps
 - HERE Maps
- Low resolution data can be augmented by "cartometric inference"

Rooftop tagging results

2. Settlement delineation

- A "settlement" is a group of households that can be connected by LV reticulation
- If one household is within a specified distance of another (the "proximity critierion") they are in the same settlement
- A "node" is the centroid of a settlement and is characterized by the number of households in the settlement

red dots = selected polygon centroids (nodes)

3. Identification of existing assets

- Utility provides location of MV lines and isolated diesel units
- Can be done with GPS in field or by digitizing maps prepared in office with field engineers
- Buffer placed around existing MV lines to distinguish between rural electrification and in-fill connections

4. Unit costing & demand forecasting

- Compile unit costs and performance of candidate technologies
 - Grid extension
 - PV mini-grids (other mini-grid technologies could be defined)
 - Solar home systems
- Define settlement demand model
 - Settlement population
 - Economic growth
 - Population growth
 - Based on power sales on existing mini-grids: sales vs. number of consumers
 - Other social and commercial infrastructure can be explicitly modeled

5. Optimization

- Apply Network Planner
 - Developed by The Earth Institute at Columbia University (<u>http://networkplanner.modilabs.org/</u>)
 - Enter nodes, technology costs and performance, demand model, financial parameters
 - Applies Kruskal's algorithm to determine minimum spanning tree and determines least-cost technology for each node
- An economic, not engineering, model

Results – technology by settlement

Assumes 90-96% electrification ratio depending on region	Number of HH	Number of settlements (nodes)	Initial capital cost (USD)	Present value of recurring costs (USD)
SHS systems	17,098	5,957	\$5,430,361	\$12,425,053
PV mini-grids	53,799	1,147	\$110,689,664	\$104,564,585
Grid extension (connected to existing grid)	128,189	541	\$185,569,034	\$183,772,778
Grid extension (new – not connected to existing grid)	47,095	347 (81 systems)	\$69,081,704	\$65,410,590
Within existing grid buffer	428,440	473	n/a	n/a

Conclusions

- First-order rural electrification plans can be prepared relatively quickly, cheaply and accurately for large areas
- Results must be combined with local knowledge and field studies "confirmatory studies"
- Additional studies are needed to ensure adequate generation and transmission

THANK YOU!

www.castlerockasia.com