

High Penetration Renewable Energy Access

Case study - Tuvalu

About ITP

- Specialist renewable energy consulting firm
- Over 35 years international experience and 1,500 projects
- Founded in the UK in 1981
- Major regional offices in UK, India, China and Australia
- Part of the ITPEnergised Group

- Head office in Canberra, offices in SA, NSW and NZ
- Active in Australia and the Pacific region for over 10 years
- Involved in RE projects of all scales (1 kW to 50+ MW)
- Services
 - Engineering Consultancy
 - Project Engineering
 - Energy Markets and Advisory
 - International Aid and
 Development

Mini-grid/Island Power System Planning

Context Island power:

- Vulnerability to severe weather events
- Energy access levels can be very low
- Energy security challenges (high price of fuel and supply chain)
- Renewable energy potential
- Solutions have to be locally appropriate

Case study – Tuvalu northern islands

- Total population approx. 10,000 (Outer Islands: 100 to 1,500)
- Outer islands only accessible by boat, typically 24hrs by boat to each island
- Irregular shipping (every 3-6 weeks), often disrupted

Case study – Tuvalu northern islands

- Existing low voltage AC electricity grids (diesel) since 2001
- Grids operated by electricity utility (Tuvalu Electricity Corporation)
- Local operators (TEC employees) deal with day to day running
- Technicians from the capital visit periodically or for repairs when required

Vulnerability to weather

Tuvalu northern islands- key issues

- Reliability
 - Only 12-18 hours of power per day normally (down to 2-4 hrs sometimes)
 - Frequent diesel shortages due to shipping unreliability
 - Generator breakdowns
 - Long delays for repairs (can take weeks to send a technician from Funafuti)
- Cost
 - Estimated ~\$1.20 to \$1.50/kWh cost of supplying energy (possibly more)
 - Vulnerable to diesel price changes
 - Vulnerable to utility cash flow issues
 - Tariffs ~25c/kWh outer islands subsidised by main island and by government
- Remote diesel grids were built as a service to the community, but are very expensive for the government

Aims of outer islands solar project

- Outer islands towards 100% renewable energy
- Energy Access: 24hr power
- System to last 20 years without need for major modification
- Reduce operating costs of outer islands power systems
- Improve power reliability (and availability during disasters)
- Eliminate need for aid fuel subsidies

Design

- Load curve very important for design
- Inputs:
 - Data logging
 - Power station records
 - Try to estimate from diesel purchases
 - Appliance & equipment survey
- Estimation of missing data
- Load Growth (Historical and forecast)
- Usually a more reliable power supply leads to more people buying appliances

Integrating renewable energy

Three broad diesel/PV hybrid design options:

1. PV fuel-save (**no battery storage**, providing ~10-15% annual load contribution)

Integrating renewable energy

Three broad diesel/PV hybrid design options:

2. PV fuel-save plus (sometimes utilising a small amount of battery storage, providing up to 30% annual load contribution)

Integrating renewable energy

Three broad diesel/PV hybrid design options:

3. PV primary (utilising a large amount battery storage, providing >50% annual load contribution).

Transportation

System sizing and Design overview

- 33,000 Ah battery bank (sealed lead acid batteries)
- 200 kW solar PV array
- SMA modular inverter/charger units
- Diesel generator to be switched off normally.

Completed system

Performance Results

- ³⁄₄ Systems very large for current loads
- Batteries drop to 80% SOC overnight, 100% by midday if sunny
- 5 days of cloudy weather without generator
- 1 inverter failure local operator successfully replaced it and sent it back for warranty claim
- Effective cost of energy supply reduced to about \$0.55/kWh (from over \$1, though tariff ~ \$0.25/kWh)

Conclusion: Lessons for Planning

- Local operators involved Day 1 & preach understanding
- Complementary activities add significant value and critical for sustainability (billing/pre-payment, EE, AMPs, tariff settings)
- Community Engagement Critical: e.g social problems with 24hr power (e.g. loud music at night)
- Training throughout construction, troubleshooting & follow up – also risk if systems becoming too reliable (operators stop maintaining generators totally/ get lazy)
- Logistics can be very complicated (never underestimate!)
- Getting accurate data and information is difficult (e.g. powerhouse data, shipping schedules)
- Knowledge sharing on what works and what doesn't.

Thankyou

IT Power Renewable Energy Consulting

Southern Cross House, 6/9 McKay St, Turner, ACT PO Box 6127 O'Connor, ACT 2602 info@itpau.com.au **p** +61 (0) 2 6257 3511 **f** +61 (0) 2 6257 3611 **itpau.com.au**