Natel Energy

Sustainable. Distributed. Utility Scale. Renewable Energy. Michael J. Spolum June 5, 2017 | ADB ACEF

ADB energy for all

A New Class of Hydropower

Global hydropower resources

3

Natel Energy is...

...a **water+energy** company based in California.

...driven by a vision of resilient, low cost, hydropower that solves the problems inhibiting traditional hydropower:

- slow and capital intensive to develop
- negative E&S community impacts
- inflexible in the face of climate uncertainty

Our mission?

To redraw the map of how and where hydropower is developed.

Hardware Innovation: the hydroEngine®

- **Patented** turbine designed around a linear powertrain
- Modular, standardized units
- Fish friendly design
- Designed for high **performance (90% turbine efficiency)** in low pressure, high flow settings
- Simplified civil works and installation

Fully flooded

Free Jet: Linear Pelton

• No cavitation

turbine

- Self-cleaning blades
- Works with draft tube to enable very low-head operation in sites with large tailwater fluctuations
- High specific speed (large flow, high speed, low head)
- 90% hydraulic efficiency
- Jet deflector: instant depower with no change in flow rate; no water hammer and no overspeed risk
- Powertrain in air
- No draft tube

How it works: the hydroEngine[®]

Linear **Pelton**

High Efficiency, Low Part Count, No Draft Tube

Flow

After the high velocity water exits the nozzle, its momentum is captured by the buckets. Water exits with just enough velocity to cleanly exit the buckets. The buckets are designed with rounded edges to be fish friendly.

Penstock

Water entering into the machine passes through the penstock and then a nozzle. The nozzle distributes the water along a linear array of buckets.

Buckets / Crossbars

After the water's momentum has been transferred to the buckets, force is delivered to the belt through a metal part called the crossbar. The buckets and crossbars are carefully designed to minimize rolling and pitching moments. This dramatically simplifies the crossbar to belt attachment.

Belt / Sprocket

The machine's composite belts transfer force from the crossbars to the sprockets. The sprocket and the belt convert the machine's linear motion into rotary motion, which is then converted to electricity by a conventional generator.

hydroEngine Advantages

	hydroEngine™	Kaplan	Propellers	Archimedes Screw	Crossflow
Applicable under 6 m of head	Yes	Yes	Yes	Yes	O No
Compact Turbine Size	Compact	Moderate	O Large	O Large	O Large
No Cavitation Issues	No No	O Yes	O Yes	No No	No No
Civil Works & Excavation	Low	O Substantial	Moderate	Moderate	Moderate
Wide Flow Range for High Performance	Wide	Wide	O Narrow	Wide	Wide
Fish Friendly	Yes	O No	O No	Yes	Maybe
Low Cost	Low	Med to high	O High	O High	Med to high

hydroEngine Operating Envelope

hydroEngine vs. Conventional Options

- Up to 80% less excavation \rightarrow Higher Flexibility and Lower Cost
- Up to 25% less expensive equipment
- Better form factor

Excavation

hydroEngine Advantages: Fish Passage

Eliminates 2 of 3 primary modes of fish mortality in turbines and substantially reduces the third mode.

- No pressure drop across moving blades
- No zones of fluid shear
- 40-100X lower impact energy due to blades moving at half of water velocity

Sensor and real fish passage tests in development based on positive analytical results.

hydroEngine Advantages: Controlled Capital Costs

- 10 to 25% cost savings on civil works due to shorter penstocks, reduced excavation and simpler configuration
- 10 to 30% cost savings on equipment due to less expensive turbines

Projects with the hydroEngine

HydroNet - Grid Services from Irrigation Canals

Completed Projects:

Natel Pipeline Detail

Global Project Portfolio

ASEAN markets have high potential

Thank you!

Michael Spolum Regional Director of Business Development +66-92-536-7589 michael@natelenergy.com www.natelenergy.com

