

# **Study Launch**

#### at

# Promoting Renewable Energy Investments in Pakistan

June 5, 2017

**Asian Development Bank** 



#### **Solar Rapid Assessment**

#### **Objectives**

- Study of current status of solar energy development in Pakistan
- Identification of barriers constraining growth of increased deployment of solar
- Discussion of interventions to address the barriers
- Recommendation of possible areas for investment in solar energy

#### Methodology

- Review of desk studies
- Interviews with solar project developers and concerned officials in the public sector



#### **Country Context**

- Installed Capacity ≈ 25,500 MW
- Demand: 5-6 GW higher than installed capacity
- Distribution and Transmission Losses: 20%
- Load Shedding: 6-8 hours in urban centers; 10-12 hours in rural areas
- Electrification Rate: 73% (90% in urban areas and 68% in rural areas)



# Country's Power Generation Mix 2015-16

| Source                                 | Installed<br>Capacity<br>(MW) | % of<br>Installed<br>Capacity | Generation<br>(GWh) | % of<br>Generation |
|----------------------------------------|-------------------------------|-------------------------------|---------------------|--------------------|
| Hydel                                  | 7,116                         | 27.77%                        | 34,272              | 29.05%             |
| Furnace<br>Oil/High<br>Speed<br>Diesel | 5,707                         | 22.27%                        | 43,103              | 36.54%             |
| Gas                                    | 11,023                        | 43.01%                        | 34,433              | 29.19%             |
| Coal                                   | 150                           | 0.59%                         | 148                 | 0.13%              |
| Nuclear                                | 787                           | 3.07%                         | 4,207               | 3.57%              |
| Wind                                   | 306                           | 1.19%                         | 786                 | 0.67%              |
| Solar                                  | 400                           | 1.56%                         | 207                 | 0.18%              |
| Others                                 | 139                           | 0.54%                         | 807                 | 0.68%              |
| Total                                  | 25,628                        | 100%                          | 117,963             | 100%               |

- Pakistan's power generation mix is dominated by thermal power
- Share of renewables (excluding large hydropower above 50 MW) is less than 2%
- Solar and wind energy has only picked up in the last few years
- Increased deployment of renewable in the country can provide energy security, foreign exchange reserves stability and environmental benefit

Power System Statistics 2015-16



# Pakistan's Renewable Energy Target

#### Adding a minimum of 9,700 MW of renewable energy capacity in the system by 2030





#### **Solar Potential in Pakistan**

- $\circ$  Pakistan lies in an area of one the highest solar irradiance in the world
- There is about 2,900,000 MW of solar energy potential in the country
- According to Pakistan Energy Book 2005-06, the amount of energy available in Balochistan is enough to meet current energy requirements of the country
- Global Horizontal Irradiance (GHI) values over 4.5 kWh/m2/day covering over 90% of the country's land area.
- Values of just over 6.4 kWh/m²/day are reached in the southwestern region of Balochistan decreasing gradually towards the northeast of the country to 4.0 kWh/m²/day.



#### **Global Horizontal Irradiance**



World Bank Group ESMAP



#### **Photovoltaic Power Potential**





- 28 Projects of 957 MW are at various stages of development within the framework of AEDB policies and procedures
- Additional 3,000 MW initiated by provinces
- So far 4 projects of 400 MW are operational in Cholistan, Punjab





#### **Distributed Solar**

- Net Metering initiated in Punjab and is in the process of being implemented in other provinces
- Solar power for un-electrified schools and basic health units
- Solar Home Systems for households in remote villages
- Conversion of agricultural tube wells to solar power





#### Declining Trend in Upfront Tariff of Solar PV Projects



Source: Various NEPRA Upfront Solar Tariff Determinations



## Barriers Constraining Increased Deployment of Solar Energy

#### **Private Sector vs. Public Sector**

| Private Sector Perspective                                                                                        | Public Sector Perspective                                                             |
|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Insufficient capacity of the grid to<br>evacuate power from incoming power<br>projects including renewable energy | Intermittent nature of the resource –<br>need about 400-500 MW of spinning<br>reserve |
| Frequent revisions of tariff by the regulatory authority                                                          | Ability of renewables to meet electricity demand of the country                       |
| Lack of coordination between government agencies                                                                  | High tariffs awarded to renewable energy projects                                     |
| Perceived bias, among most government<br>officials, against renewables and in favor<br>of coal and LNG projects.  |                                                                                       |



#### Variation in Public Sector Perspectives

| Government Agency                                                            | Identified Barrier(s)                                                                                                                                                       |
|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alternate Energy Development Board<br>(AEDB)                                 | Inadequate capacity of the grid and system operator to integrate variable renewable energy into the system                                                                  |
| National Transmission and Despatch<br>Company (NTDC)                         | Vulnerability of renewable energy to<br>large fluctuations affecting grid reliability<br>and security<br>Insufficient financial resources to<br>undertake the required grid |
|                                                                              | reinforcement                                                                                                                                                               |
| Central Power Purchase Agency-<br>Guarantee (CPPA-G), Planning<br>Commission | High upfront tariffs awarded to solar and wind projects driving up generation costs                                                                                         |



#### **Possible Solutions**





## **Grid Strengthening**

- Carry out major system reinforcements, including additional transmission lines and transformers.
  - i. Reinforcement of 220 kV system in Lal Suhanra region and extension of 500kV network in Jhimpir.
  - ii. 132kV system reinforcements for numerous dispersed and embedded renewable generators.
- Leverage private investment through the recently introduced "Transmission Line Investment Policy of 2015".
- Build capabilities of the system operator to integrate renewable energy
  - i. Improved forecasting capabilities
  - ii. Criteria for contingencies, and its response to up/down ramps in generation as well as weather disturbances
  - iii. Response options such as electricity storage and transmission to distant load centers.



## **Capacity Building**

- Establish a one-window facility for developers throughout the implementation process.
- Standardize processing time for government agencies and departments to reduce the turnaround time
- Work on improving administrative capacities of the relevant federal and provincial agencies both in terms of sectoral knowledge and sufficiency of human resources to execute renewable energy projects
- Improve energy planning in Pakistan to optimize available generation sources and to meet demand in the most cost-effective and sustainable manner.



#### **Competitive Bidding**

- Implementing auction schemes can alleviate concerns of the federal government regarding high solar energy costs and tariffs.
- NEPRA, in March 2015, announced competitive bidding tariff for solar projects. AEDB has initiated work on developing framework for competitive bidding
- The framework should be based on the lessons learnt from the past policies in the country for the IPPs, as well as from the experience of international renewable energy market.
- Design of the auction should be such that it disincentivizes bidders from underbidding



#### **Evolution of Utility-Scale Solar PV Auction Prices around the world**



Source: IRENA, 2017a



#### **Future Technologies**

- **o** Hybrid Plants
- Concentrated Solar Power
- $\circ \quad \textbf{Floating Solar}$
- **o** Smart Grids
- Energy Storage Technologies
- Solar Powered Irrigation Pumps
- Pay-As-You-Go System



#### **Hybrid Plants**

- Combining Photovoltaic (PV) with wind turbines, large hydro, and/or diesel generators can address the weather-reliant issues of intermittent renewables
- Hybrid projects benefit by increasing the aggregate system output and by sharing the transmission capacity
- Hybrid plants are also ideal for installation in remote areas, electrifying complete regions with high efficiency.



Source: <u>http://www.ecmag.com/section/green-</u> building/hybrid-power



#### **Concentrated Solar Plants (CSPs)**



- Compared to PV systems, CSPs allow the use of solar power to be used for baseload generation as well as for peak power generation.
- With improvements in technology and industry experience, CSP bid prices have started declining. The installed costs of a concentrated solar plant is expected to decline by 33% by 2025.
- CSP projects in Balochistan and/or south of Punjab can be beneficial for Pakistan given the grid constraints and the flexible dispatch profile CSP offers.

Source: <u>http://www.seia.org/policy/solar-</u> technology/concentrating-solar-power



#### **Floating Solar**

- Setting up floating solar plants in reservoirs of hydro plants, such as Tarbela, Mangla and Ghazi Barotha, can improve its water storage capacity and amp up the energy production.
- Globally, Japan has taken lead in the installation of this technology. Other countries including India, Australia, UK and Brazil have followed suit.
- Solar plants can also be built atop irrigation canals enabling efficient and cheap land use and reduced water evaporation from the channels underneath.



Source: <u>http://reneweconomy.com.au/worlds-</u> largest-floating-solar-pv-plant-connected-to-gridin-china-49396/



#### **Smart Grids**

- Smart grids provide real-time data on system operation which can be used for improving reliability of the grid as well as for increasing system security.
- It allows for more sophisticated information from transmission and distribution systems as any fluctuation of voltage can be addressed before it leads to an outage.
- Smart grid technology should be implemented incrementally.





#### **Energy Storage Technologies**

- Combining battery storage with renewable energy can support the output of these plants by responding quickly to any output fluctuations.
- In 2015, 250 MW of utility-scale electricity storage (excluding pumped hydro and lead-acid batteries) were installed worldwide, up from 160 MW in 2014 (IRENA, 2016)
- Decline in capital costs will continue in the next five years, with the strongest declines in lead acid batteries, lithiumion energy applications, sodium and long-duration flywheels (Lazard's Levelized Cost of Storage Analysis 2.0)





#### **Solar for Water Pumping**

- 1.08 million tube-wells and lift pumps are currently in operation in the country but the number of solar powered tube-wells and pumps are limited to few thousands.
- Inefficient use of electricity by diesel powered water pumps is a concern across the country, as majority of the farmers do not pay for electricity for pumping water.
- Conversion of diesel powered pumps on to solar can yield economic and environmental benefits





#### **ADB's Involvement in the Sector**

- ADB has been the largest development assistance provider in the energy sector, providing almost \$8 billion in assistance to the sector.
- Under its Multi-Tranche Financing Facility (MFF), ADB is assisting NTDC in strengthening Pakistan's power transmission system and improving operations and management of NTDC and CPPA-G.
- ADB is also financing installation of Advanced Metering Infrastructure (AMI) in IESCO and LESCO
- Late last year, ADB approved Access to Clean Energy Result Based Lending (RBL) facility in 2016 for financing off-grid solar and micro-hydro to provide power for public schools, community centers, and basic health units in Punjab and KPK.

