

Topic: Why PV quality matters in Asia?

Date: May 2018

Author: Dr. Alex Li

How to ensure high quality?

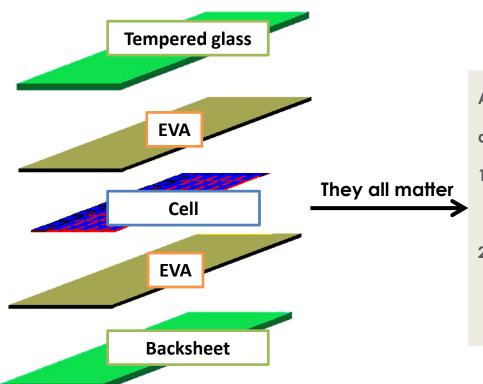
- To provide quality benchmarking measures
- Consequences of module failures
- The financial implications
- Tips to ensure high IRR

Reliability

Durability

High Nameplate Power
CSIRO Performance Report

Low Annual Degradation


DNV GL Reliability Scorecard

Report

DuPont Tedlar Backsheet
Thicker wafers and frames

A supreme BOM selection to avoid <u>micro-cracks</u> and <u>backsheet failures:</u>

- Thicker solar cells (imagine if you prefers a thicker wall of you home?)
- Strategic partner with Dupont to utilize
 Tedlar backsheets (imagine if you prefers
 denser construction materials of your wall?)

Jinko vs Key competitors - Raw material Premium raw materials Raw materials Jinko T-Company C-Company J-Company H-Company 200-210 Poly cell ≥210 200-210 200-210 200-210 > Thicker cells Avg. Cell Cell thickness Mono cell 195-200 ≈195 ≈195 ≈195 Poly 60/72-cells Jinko connector J-Company Connector MC4/H4/UTX/EVO3 T4/ PV2/H4 MC4/UTX /MC4/UTX connector /MC4 Mono 60/72-cells TPT/TPE/KPF/PYE 60-cell TPT/TPE/TFB/KPF TPT/TPE/KPF TPT/TPE/KPF/KPE FFC/PYE Poly (Main) TPT/TPE/KPF/PYE TPT/TPE/KPF/KPE 72-cell TPT/TPE/TFB/KPF TPT/TPE/KPF FFC/PYE Backsheet → Supreme 60-cell TPT/TPE/TFB/KPF TPT/TPE/KPF/PYE TPT/TPE/KPF TPT/TPE/KPF/KPE Mono backsheet (Main) 72-cell TPT/TPE/TFB/KPF TPT/TPE/KPF/PYE TPT/TPE/KPF TPT/TPE/KPF/KPE

Superior point in BOM - Thickening and selection of material makes final products more Robust and Reliable. Risky point in BOM - Which may take risk in module's mechanical loading performance/reliability /safety.

A supreme BOM selection to avoid micro-cracks and backsheet failures.

Severe backsheet failures were observed in Australia to cause:

- 1. Unprotected module
- 2. Current leakage
- → Tedlar backsheet can avoid these critical issues.

Is Module still Module after 10 Years?

Backsheet Type: PET

- 5 years old installation in Spain
- · Yellowing and Cracking
- 32% power loss over 5 years (6.4%/year)
- Some modules failed wet leakage test – Safety Risks

Backsheet Type: PVDF

- 4 years old installation in North America
- Severe cracking and delamination of PVDF film
- 57% of the installed modules impacted

Backsheet Type: PET

- 9 years old installation in West China
- Severe cracking, chalking, peeling and yellowing

Backsheet Type: Polyamide (PA)

- 5 years old installation in Italy
- Severe cracking and delamination of PA film
- Inverter tripped due to current leakage

The Solar Pyramid – DNV GL Reliability Scorecard Report

DNV-GL

PV Module Reliability Scorecard Report 2017

Report contributors
Jenya Meydbray, VP Strategy & Business Development
Frederic Dross, Head of Module Business

DNV GL Reliability Scorecard Report 2017 Thermal Dynamic Humidity-freeze Damp heat PID Test type cycling mechanical load 200 cycles Standard test 3 cycles 1000 hours 96 hours Test **DNV** test 600 cycles 1000 cycles 30 cycles 2000 hours 96 hours conditions Top performance 2% 2% 2.50% 2% 1% criteria Top Jinko Top Top Top Top Top Top Top Top **T-Company** Top H-Company Lower Lower Top Top Top 2017 Y-Company Lower Top Top Top Lower L-Company Top Top Top Top Top **G-Company** Lower Top Lower Lower Top Jinko Lower Lower Top Top Top **T-Company** Top Top Lower Top Lower **H-Company** Top Lower Top Lower Top 2016 Y-Company Lower Top Lower Lower Lower * * L-Company * * **G-Company**

Strict quality control to ensure long term reliability \rightarrow report available upon request. Who does not participate in this test?

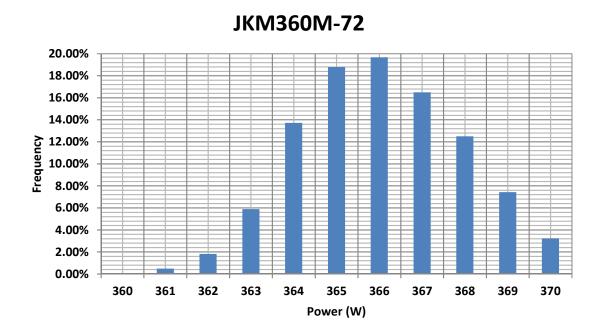
The Solar Pyramid – CSIRO Performance Report

	***	<u> </u>		***	-	<u> </u>		***			
	View product >	View product >	View product >	View product >	View product >	View product >	View product >	View product >			
Test results	Canadian CS6P-250P	JA Solar JAP6-60- 260/3BB	Jinko JKM250P-60-A	Q-Cells Q.PRO-G3 255	Renesola JC260M-24/Bb	Sunpower SPR-E20-327	Suntech STP250-20/Wd	Trina TSM-260PC05A			
Price (\$)	\$240	\$301	\$215	\$209	\$263	\$217	\$233	\$238			
est results											
Overall score (%)	89%	85%	91%	84%	84%	85%	89%	87%			
Measured average power outdoors 12 months i	236.2	239.9	238.4	234.4	239.3	301.7	236.1	242.8			
Measured average power outdoors 3 months (W)	234.7	235.4	234.7	229.5	235.4	298.1	231.4	239.5			
Measured power in lab when new (W)	250	252.6	254.7	250.3	251	322.2	247.8	256.5			
Yield per 1000W by label 12 months (W)	944.7	922.8	953.8	919.4	920.6	922.5	944.4	934			
Yield per 1000W by label 3 months (W) i	938.6	905.4	938.6	900.1	905.5	911.6	925.5	921			
Efficiency (%)	15.6%	15.5%	15.6%	15%	15.4%	19.8%	15.2%	15.7%			
Comments											
Good points	Very good performance across 12 months of outdoor testing.	Very good performance across 12 months of outdoor testing.	Excellent performance across 12 months of outdoor testing.	• NO.1	perform	ance rat	lio in a 12	2-month			
Bad points	Nothing in particular.	Nothing in particular.	Nothing in particular.		political						
Specifications				fi a lal	Lock						
Claimed nominal power (W) i	250	260	250	field test.							
Claimed power tolerance i	0 to +5W	0 to +5W	0 to +3%								
	980	991	990		al differen		محمد المنطح	warlin or			
Width (mm)				 A real difference in actual operating 							

	Standard Mono as an example							
	Jinko	T-company	C-company	Q-company	J-company			
Nameplate power (W)	NOCT power (W)							
325				239				
330			242	243				
335	250	250	246	246	244.9			
340	254	253	250	250	248.5			
345	258	257	253	254	252.2			
350	262	261			255.8			
355	266	264			259.5			
360	270	268						

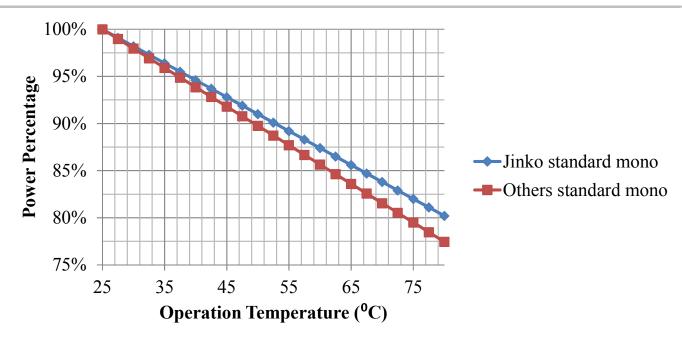
Take-home message: Jinko's excellent NOCT power output ensures high actual energy yield.

NB: all data extracted from public datasheets.

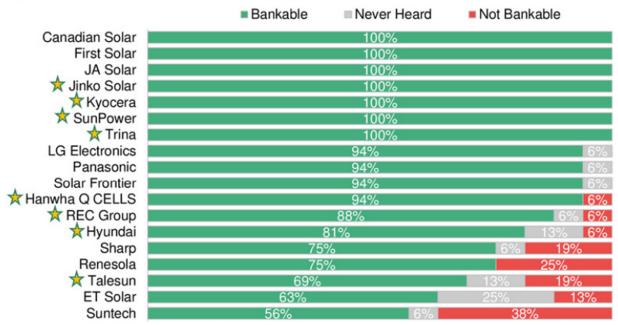


The two key factors:

- 1. +3% Power tolerance (Jinko 360W can be up to 371.8W, others can only go up to 355W)
- 2. Temperature Coefficient (Jinko does not lose as much power at high T as others does).


Take-home message: our better temperature coefficient and 3% power tolerance ensures higher actual output in the actual operation.

The +3% power tolerance brings you more power from the same nameplate power.


At a module temperature of 75 degree C (or ambient temperature of 50 degree C),

Jinko module produces 2.5% more power than other brands.

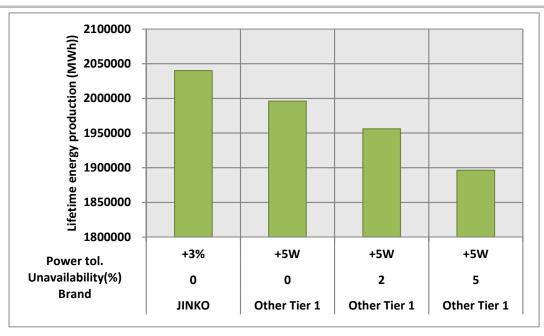
Figure 1: BNEF's PV bankability survey (top 15)

Source: Bloomberg New Energy Finance Note: Stars indicate the 'top performers' within <u>DNV</u> <u>GL's 2017 PV Module Reliability Scorecard Report</u>. DNV GL did not test all of the manufacturers listed above, so a missing star is not indicative of poor quality.

The financial significance of quality

PROJECT	Basic	JINKO	Other Tier 1	Other Tier 1	Other Tier 1
Module Unavailability (%)		0	0	2	5
Positive Power tolerance(%)		+3%	+5W	+5W	+5W
Project capacity (MWp)	100	POLY	POLY	POLY	POLY
Module Power(W)		330	335	335	335
Module price (USD cents/Wp)		32	31	31	31
Power Warranty(year)		25	25	25	25
Temperature Coefficiency of Power(%)		0.4	0.4	0.4	0.4
First year degradation (%)		2.5	2.5	2.5	2.5
Annual degradation (%)		0.7	0.7	0.7	0.7
Positive Power tolerance(%)		3	1.5	1.5	1.5
Bifacial Factor(%)					
Ground reflection					
ANALYSIS RESULTS					
LCOE (USc/kWh)		5.66	5.77	5.90	6.11
IRR		15.65%	15.00%	14.16%	12.95%
Capital Invest		\$ 45,552,508	\$ 45,389,742	\$ 45,389,742	\$ 45,389,742
Land cost		\$ -	\$ -	\$ -	\$ -
EPC cost(/Wp)		\$ 0.7592	\$ 0.7565	\$ 0.7565	\$ 0.7565
Module cost		\$ 19,199,981	\$ 18,599,535	\$ 18,599,535	\$ 18,599,535
Inverter cost		\$ 5,874,089	\$ 5,981,738	\$ 5,981,738	\$ 5,981,738
Mounting Construction cost		\$ 5,890,730	\$ 5,802,615	\$ 5,802,615	\$ 5,802,615
BOS cost (/Wp)		\$ 0.4392	\$ 0.4465	\$ 0.4465	\$ 0.4465
Lifetime energy production (MWh)		2040116	1996124	1956202	1896318
O&M Cost (\$)		\$ -	\$ -	\$ 393,705	\$ 984,262

Let's evaluate the financial value of performance, reliability and durability \rightarrow 100MW PV project simulation.


The financial significance of quality

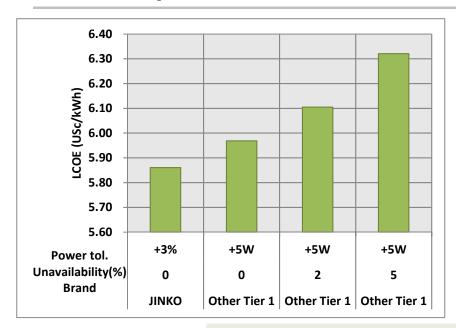
In this case, Jinko module is assumed to be 3% more expensive than other Tier 1 peers, but remember:

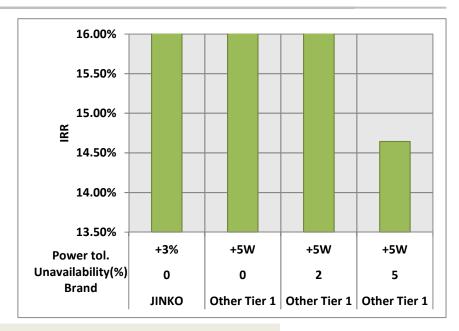
- 1. Module is not the only project component.
- 2. The outcome is what we care about.



Distinct energy output through 25 years due to:

- 1. Performance difference in hot climate;
- 2. Module reliability and durability → please refer to DNV GL report.





Poor reliability and durability can result in high O&M cost, up to USD 1m.

→ This can be avoided by evaluation about quality vs price.

Key to succeed a good PV investment:

- Excellent actual outdoor performance;
- 2. High reliability and durability due to superior BOM.
- \rightarrow High IRR (up to 2.5% higher in this case).

Tips to ensure high IRR

Tips to consolidate a high IRR \rightarrow quantify everything rather than only \$\$\$:

- 1. Top performers at DNV GL reliability scorecard report
- 2. Superior BOM to minimize module failures
- 3. High outdoor actual performance
- 4. +3% power tolerance and excellent temp coeff

Head of technical service, APAC:

Dr. Alex Li <u>alex.li@jinkosolar.com</u>

"A new technology aims to reduce the electricity cost and make electricity

more affordable for the society, and this is what science is for."

- Prof. Stuart Wenham

The End

