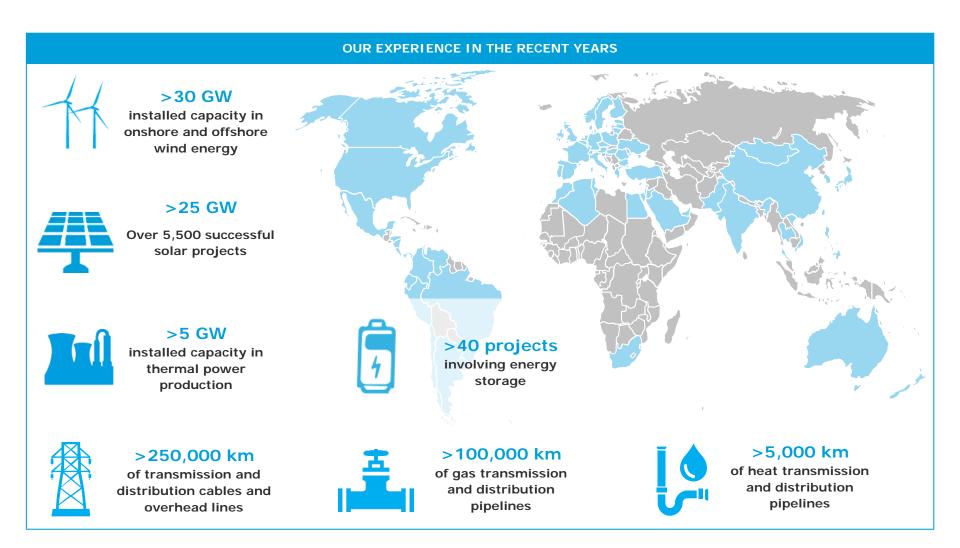
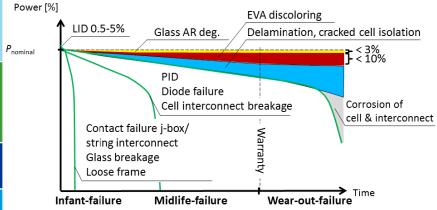
DNV-GL



Scaling-Up Solar PV Deployment: Implementing Projects with Assured Quality

Deep Dive Workshop, ACEF, Manila 4-8 June, 2018

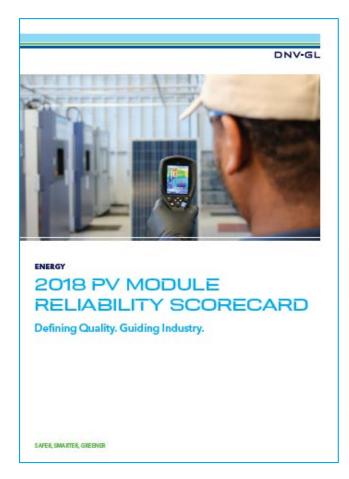
Alfredo Jakub


In recent history we have advised in hundreds of projects, significantly reducing the investors' risk position

Module defects and Product Qualification Program (PQP)

Failure categorizations (Source: DuPont)

77.7%	No defect detected	Not Applicable
12%	Cell/ Interconnect	Corrosion, hot spot, broken interconnect, snail trails, cracks, burn marks
9.5%	Backsheet	Cracking, yellowing, delamination
1.3%	Encapsulant	Discoloration or delamination
0.4%	Other	Broken, etched, hazed glass, etc.

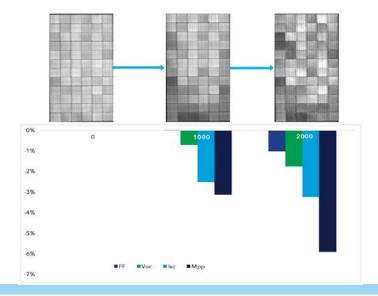


Source: Review of Failures of Photovoltaic Modules, IEA PVPS 2014

- In 2012, DNV GL developed PV modules PQP with two aims:
 - 1. Provide buyers with independent reliability data at no cost
 - 2. Provide independent recognition to manufacturers who focus on quality

DNV GL has tested over 300 BOMs from over 50 module manufacturers!

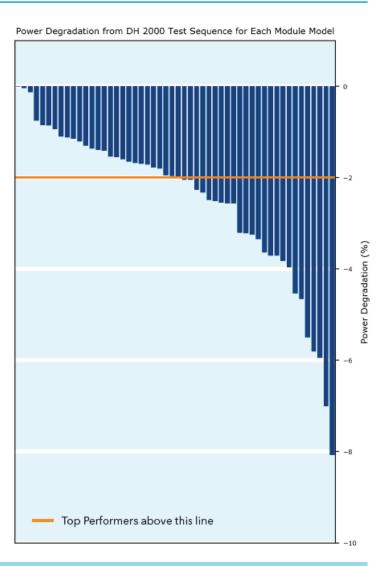
PV Module Reliability Scorecard

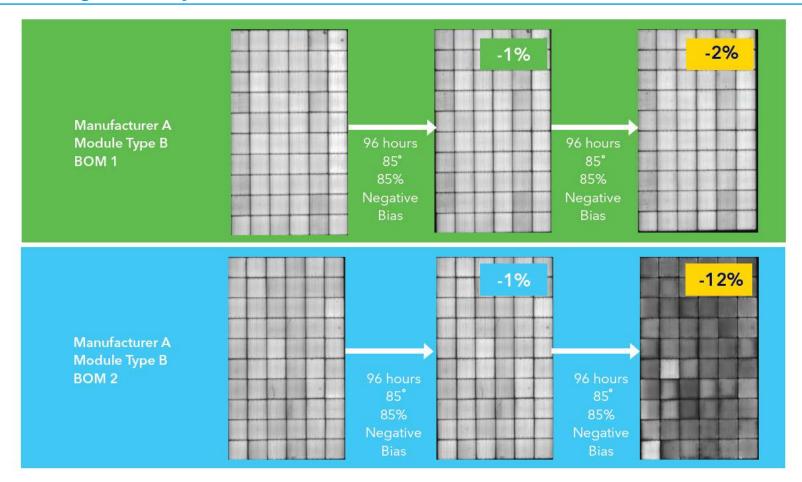

- Updated every 1-2 years
- Summarizes the last 18 months of PQP testing results
- For a specific data on module test result, refer to PQP as downstream partner.

Reliability Tests	Duration Top Result		Bottom Result (%)	Median Result (%)
Damp Heat	2000 hours	No Measurable Degradation	-8.1	-2.5
Thermal Cycling	600 Cycles	No Measurable Degradation	-8.8	-1.6
Dynamic Mechanical Load	1000 Cycles + TC50 + HF10	No Measurable Degradation	-3.1	-1.2
Potential Induced Degradation	192 Hours	No Measurable Degradation	-7.4	-1.4

The 2018 PV Module Reliability Scorecard is available as a <u>free download</u>.

2018 results - Damp heat


- DNV GL evaluated failures from three viewpoints: BOM, model type and manufacturer.
- Broadly categorized into:
 - 1. Visual failure
 - 2. Safety failure
 - 3. > 5% power loss


Module Model CHSM6612M/HV-xxx CHSM6612P/HV-xxx BYDxxxP6C-36 BYDxxxP6K-36 FXS-xxxBB-SAB1W FXS-xxxBC-SAD1W GCL-P6/72xxx Q.PLUS BFR-G4.1 xxx HT60-156P-xxx HT72-156P-xxx JKMSxxxPP-60 JKMxxxPP-72 JKMxxxPP-72-V LR6-60PB-xxxM LR6-72PH-xxxM D6PxxxE3A RECxxxTP2 SPR-P19-xxx-COM STPxxx-20/Wem TSM-xxxDD05A.18(II) TSM-xxxDD14A.18(II) TSM-xxxPD14

TSM-xxxPE14A

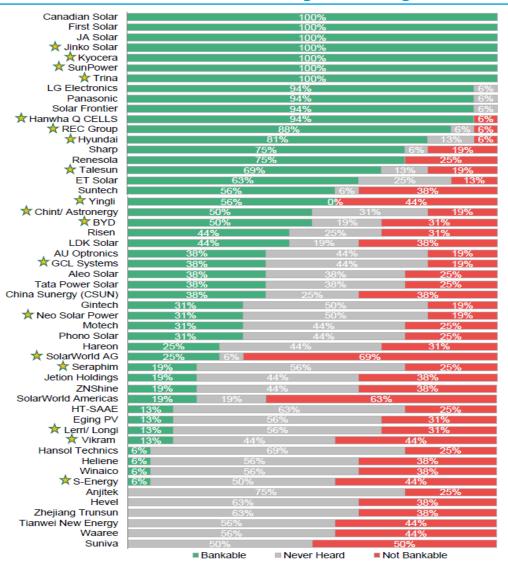
YLxxxD-36b

Case Study- PID performance

Same Manufacturer. Same Model Number. Different Performance.

Witness test

- Control of the provenance (temper-proof sealing tape)
- Systematic factory witness
 - Avoids golden samples
 - Control of BOM
 - 122 elements constitute a BOM
 - Sneak-peek in the factory
- Factory location is part of the BOM description
- Re-test guidelines for factories
 - Ask for the factory location to be **DNV GL "qualified"**
- Witness report is an integral part of the PQP
 → Ask for it!



BNEF's PV bankability survey results (with 2017 PQP)

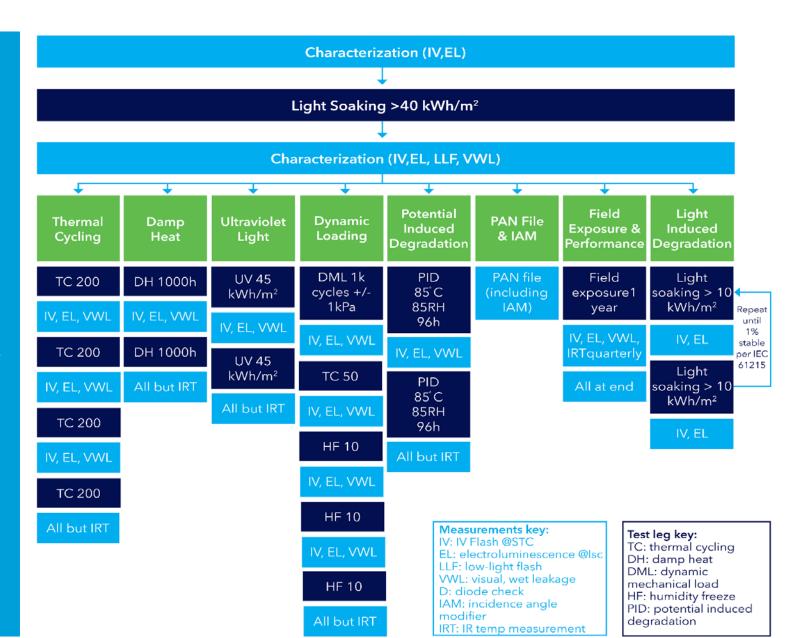
- Stars indicate the 'top performers' within DNV GL's 2017 PV Module Reliability Scorecard Report.
- DNV GL did not test all of the manufacturers listed, so a missing star is not indicative of poor quality.

Source: Bloomberg New Energy Finance

Historical Scorecard

 Top Performers are module types that degraded less than 2% for the entirety of the test sequence.

	RELIABILITY SCORECARD	RELIABILITY SCORECARD	RELIABILITY SCORECARD	RELIABILITY SCORECARD
Jinko Solar	✓	✓	✓	√
Trina Solar	✓	✓	✓	✓
Yingli Solar	✓	✓	✓	✓
Astronergy Solar	✓	✓		✓
Hanwha Q CELLS Co., Ltd	✓	✓	✓	
JA Solar Holdings	✓		✓	✓
REC Solar	✓	✓	✓	
BYD Co, Ltd	✓	✓		
Flex Ltd	✓	✓		
GCL Solar Energy, Inc.	✓	✓		
LONGi Solar Technology Co, Ltd	✓	✓		
Neo Solar Power Corporation (NSP)	✓	✓		
Phono Solar Technology Co, Ltd	✓		✓	
Solaria Corporation	✓	✓		
SunPower Corporation	✓	✓		
SunSpark Technology, Inc	✓	V		
Suntech Power	✓			✓
Adani (Mundra Solar PV Ltd)	√			
First Solar, Inc.	✓			
HT-SAAE	V			
LG Electronics, Inc.	√			
Panasonic	✓			

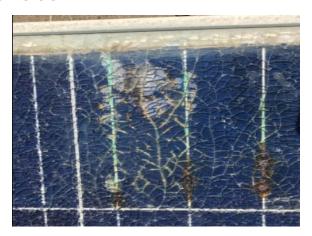

Thank you

Alfredo Jakub alfredo.jakub@dnvgl.com +65 84181250

www.dnvgl.com

SAFER, SMARTER, GREENER

The trademarks DNV $GL^{@}$, DNV $^{@}$, the Horizon Graphic and Det Norske Veritas $^{@}$ are the properties of companies in the Det Norske Veritas group. All rights reserved.


PQP Test Sequences

11 DNV GL ©

04 June 2018 DNV·GL

The trouble with warranties

- Measuring power degradation in the field is extraordinarily difficult due to the uncertainty of measurement tools and sensors.
- Additionally, an allowance for uncertainty, typically according to EN 50380, is applied for warranty enforcement which effectively lowers the guaranteed level by a further amount (on the order of 3%).
- This results in most PV module warranty claims being limited to excessive underperformance, defects seen visually, or complete failure.
- Most module warranties only cover the replacement module costs and not the associated labor.

