

Quality Infrastructure boosting PV markets

ACEF 2018 Manila, Philippines 8 June 2018

Global PV market

Globally: 2017: 161 billion USD 2050: ~ 7 000 GW and > 6 trillion USD

Record PV auction prices – what will be delivered?

Sources: IRENA (2018), Renewable Power Generation Costs in 2017 CNE Chile

Quality Infrastructure to mitigate technical risk

Which **instruments** do we have to mitigate technical risk, attract investment and public acceptance, and meet expectations by all stakeholders in a USD trillion market?

Lenders' perspective: revenues only important during first 10-15 years

- Risk of infant failures are passed to EPC
- Bankability assessments further minimize risks of midlife failure
 - ✓ Track record of company and modules
 - ✓ Quality of manufacturing facility
 - ✓ Warranty conditions
 - ✓ Valid renown certifications

Holistic View - Quality Covers the Whole System, not Hardware only

Source: TÜV Rheinland

IRENA (2013) "International Standardisation in the Field of Renewable Energy"

Implementing a Quality Infrastructure

INCREASING QUALITY ASSURANCE

Source: IRENA (2017) Boosting Solar PV Markets: the role of quality infrastructure

It's not about equipment cost / it's about LCOE

Calculating the levelised cost of electricity

LCOE =
$$\frac{\sum_{t=1}^{n} \frac{I_{t} + M_{t} + F_{t}}{(1+r)^{t}}}{\sum_{t=1}^{n} \frac{E_{t}}{(1+r)^{t}}}$$

Where:

LCOE = the average lifetime levelised cost of electricity generation;

It = investment expenditures in the year t;

Mt = Operations and maintenance expenditures in the year t;

Ft = fuel expenditures in the year t;

Et = electricity generation in the year t;

r = discount rate; and

n = life of the system.

Commonly a major criterion for investment

But not only relevant criteria:

- Installation and services
- System performance
- Durability

QI aims to minimise the LCOE and maximise profit

Photo- voltaic Module	Inverter	Design and Installation	Comm- issioning
IEC 61730 and IEC 61215, or IEC 61646 as applicable	IEC 62109-1, IEC 62109-2, IEC 62093 (Qualification)	IEC 62548 ¹ (Primary) and IEC 60364 series	IEC 62446
Perform- ance and Operations	Grid-Code- Related	Off-Grid Specific	Utility- Scale Specific
IEC 61724 Future IEC 62446-2	Country specific, but grid function	IEC 62257 Series for off- grid and rural	Future IEC 62738 (2016)

International standards across the project lifecycle

QI supporting policy-makers

- Economic and affordable photovoltaic systems
- Support development goals
- Reliable photovoltaic systems
- PV integrated in power systems

HOW QUALITY
INFRASTRUCTURE SUPPORTS
THE POLICY OBJECTIVES

WHERE TO APPLY QUALITY INFRASTRUCTURE

- Attracts investment through risk mitigation
- Increases public acceptance
- Encourages efficient services
- Fosters good practices
- Promotes consumer protection

- White papers
- Guidelines
- Regulations
- Incentives
- Industry guidebooks
- Vocational training

Europe's engagement in international standardization IEC TC82

-Limited engagement from emerging markets

-Need for engagement in relevant international platforms

- IEC / IECRE
- PVQAT
- IEA PVPS (T13, T12)
- IRENA
- Others

-Work together

- Industry (SolarPower Europe SolarBankability, SolarUnited)
- R&D institutes
- Financial institutions
- Commercial banks
- Insurance companies
- Policy-makers and regulators
- Communities and final consumers

Source: http://inspire.irena.org/Pages/default.aspx

Take aways

- We entered into an era of low equipment cost and higher pressure on marginal profits | quality infrastructure is critical to mitigate risks and achieve the expected LCOE
- Cost benefit ratio of assuring quality is positive
- Quality is not about hardware only, but a system approach is needed
- Progress on standards and conformity assessment schemes need to accelerate the pace to meet the existing and NEW markets needs
- Need to engage emerging markets and work closer with project developers and R&D bodies to adapt technology and technical requirements
- International and regional cooperation networks strengthen and accelerate the development and implementation of QI for PV systems. Leverage on existing initiatives
- QI supports effectiveness of policies for PV markets all white papers should include the role of QI

http://Inspire.irena.org

Download for free: www.irena.org/publications

Thank you

Contact:
Francisco Boshell (<u>Fboshell@irena.org</u>)
Alessandra Salgado (<u>Asalgado@irena.org</u>)

