FLOATING SOLAR AND LOW-COST ENERGY STORAGE FOR DEVELOPING COUNTRIES

ASEF2018 June 5th, 2018

Presented by: Hans-Henning Judek

J.E. Access Ltd, Yokohama, JP

"WHITE KNIGHT?

ASEF2015 ASIAN DEVELOPMENT BANK

SOLAR – ENEMY OF FARMERS? FOOD VS. ENERGY – PART 2

BloombergBusiness

Markets

Insights

Solar Parks on Fertile Land Are New Adversary of India's **Farmers**

- March Sri Lanka announces plans for a 100 MW plant on a dam to be followed by multiple similar projects
- ► May China start-up of the (then) largest floating solar plant with 40 MW
- November Masdar announces
 development of a 200 MW plant in Indonesia
 with a potential pipeline of installations on 60
 dams

- ►December China starts first segment of a 150 MW plant
- ► December The Indian government invites through SECI Expressions of Interest for 10 GW projects of floating solar
- April 2018 The Maharashtra State Electricity Distribution Company invites EoI for 1000 MM floating solar on the Ujjani Dam.
- ▶Etc.

FIRST SOLUTIONS

Land-based solar

...combined with a float

CREATED THE FIRST GENERATION

YES, YOU CAN PULL A SUPER TANKER WITH 25,000 RUBBER BOATS AND 5HP OUTBOARD MOTORS –

BUT IS IT EFFICIENTSS

NEXT GENERATION®

NEXT GENERATION® – PARAMETERS TO FULFILL

- ► Costs reduction by utilizing off-the-shelve products
- ► Potential for on-site production of floaters to save transportation costs
- ► Facilitation and acceleration of module installation process
- ▶ Large-scale modules that can be installed without craffes
- ▶ Robotic cleaning, especially of bird droppings

MARINE ENVIRONMENT (MAJURO, MARSHALL ISL.)

地図データ ©2014 Google - Google マップメーカーで編集する

MAIN PROBLEM: CORROSION

FLEXIBLE SOLAR RECEIVERS ON CLOTH

SURPRISING OPV

NEXT GENERATION – SOLAR RECEIVERS ADAPTED TO ON-WATER INSTALLATION (IMAGE)

THE FUTURE REQUIRES STORAGE!

- ► Worldwide over 5% of the solar and wind energy is curtailed
- ► Solar cannot offer 24/7 energy supply
- ▶ Fluctuations can lead to grid instability
- Solar could become `second grade` power

THE 'DUCK CURVE'

The 'duck curve' is solar energy's greatest challenge

LOW-COST ENERGY STORAGE

- ►We are offering non-battery storage as an option
- ►30+ years life time <u>without</u> deterioration
- ►Costs substantially lower than Li-Ionbatteries

WE ARE MISSING THE REAL POWER TOOLS

HOW DOES IT WORK?

Energy storage with induction heating in a proprietary alloy at 1750°C – 30MWh in a 20ft container format.

Comparison with other Technologies

Smallest volume per MW of stored thermal energy

Single 6m x 2.4m storage unit normal charge stores 29.92MWh thermal

60 MWh Thermal Battery vs. 54 MWh Lithium-Ion Battery

Thermal Battery

Totally Transportable

Un-charged or fully charged with 29.9 MWhof thermal energy the Thermal Battery can be transported by road, rail or sea safely.

.... BY TRUCK (FOR MINI GRIDS)

Round-trip Efficiency of Lithium-Ion Batteries?

98% - only 2% loss??

80%?

70%?

System Parameter	EES 1	EES 2	EES 3
	(Rise Carr)	(High Northgate)	(Harrowgate Hill)
Capacity	5292 kWh	200.3 kWh	105.9 kWh
	(measured)	(measured)	(measured)
Round Trip Efficiency (excluding parasitic losses)	83.2%	86.4 %	83.6 %
	16.8%	13.6%	16.4%
Average Parasitic Load	29.5 kW	2.50 kW	1.77 kW
Round Trip Efficiency including parasitic losses, assuming one charge/discharge cycle per day	69.0%	56.3%	41.2%
Response Time	< 1 minute	< 1 minute	< 1 minute

Energy Retrieval

Via a Brayton cycle (Gas) Turbine without fuel – just by inducing 950°C heat into the compressed air of the turbine (Patented)

Combined Cycle (gas and steam turbine in tandem)

 Electrical efficiency 60%. 40% thermal energy can be efficiently used for heating and cooling purposes with absorption chillers, e.g. HVAC or cold storage.

Our secret 'Weapon' - The Aurelia Turbine

Currently available with 400 kW with 41% efficiency From the middle of 2019 with 1 MW and 45% efficiency

Retrieval Efficiency

- ▶ With AURELIA turbine 41% el. & 59% thermal
- CCPP with AURELIA turbine and a super-critical steam turbine up to 80% el. & 20% thermal

That is beating Li-Ion electric efficiency, while the efficiently usable thermal energy is a bonus.

THANK YOU!