

Cost, energy and climate performance assessment of Split-type ACs in Asian countries

4 June 2018, ADB Manila

Asean Clean Energy Forum

On behalf of:

of the Federal Republic of Germany

Philipp Munzinger Project Manager (C4 Project) **GIZ** Proklima

Content

- Background and objectives
- Methodology
- Key findings
- Results cross-country analysis

Background and Objective

- Split-type Air Conditioners (Split ACs) are responsible for largest share of energy consumption and GHG in RAC in many countries worldwide.
- Barriers include decision maker's (policy, consumers) little knowledge about the energy and cost efficiency of split-type ACs
- Objective of the study is to provide an overview of energy and cost efficiency, climate impact of split-type ACs in selected partner countries.
- The results and recommendations shall help policy makers to undertake informed decision making towards more efficient and climate-friendly split AC.

Background and Objective

- Analysis of over 1,460 split type AC units across 67 local and international brands in 9 GIZ Proklima partner countries in Africa, Latin America, Middle East and South East Asia
- Assessment of commonalities and differences of split AC markets among countries
- Analysis of relationship between energy efficiency and market prices, share of technology type (inverter / fixed speed) and refrigerants used
- Recommendations on improving Minimum Energy Performance Standards (MEPS) and transitioning to appliances with improved energy efficiency and low GWP refrigerants

Methodology

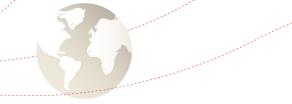
- Collection of split AC-related key data in electronic stores, brand stores and online shops in each country in order to calculate:
 - National average energy efficiency in relation to current MEPS regulation
 - Life cycle costs of split AC
 - Total Equivalent Warming Impact (TEWI)
- Data sample collected from December 2017 to March 2018.

Key parameters

Source: GIZ Proklima 2018

Country	Sample size	Cooling Capacity in kW, units per class	Capacity classes selected	Inverter share	Discount rates (%)	Electricity Tariff (USD/kWh)	Runtime (hrs./year)	Grid Emission Factor (CO2)
Grenada	24	2-4 , 9 units 4-6, 8 units	3 kW 5 kW	85% AC VSD 15% Fix	5,00%	0.310	2,920	0.634
Vietnam	78	2-3, 30 units 3-4, 37 units	2,5 kW 3,5 kW	77% DC VSD 13% Fix	6,25%	0.08	3,695	0.572
Philippines	441	2-3, 227 units 3-4, 159 units	2.5 kW 35 kW	89% DC VSD 11% Fix	3,00%	0.188	3,745	0.526
Indonesia	144	1 -2, 55 units 2 - 3, 68 units 3 - 4, 21 units	1,5 kW 2,5 kW	59% DC VSD 41% Fix	4,00%	0.094	3,434	0.827
Iran	370	2 - 4, 136 units 4 - 6, 96 units 6 - 8, 96 units	3 kW 5 kW 7 kW	8% Inverter 92% Fix	18,00%	0.009	2,555	0.7
Thailand	62	2 to 3, 19 units 3-4, 18 units 5-6, 18 units	3 kW 4 kW 5 kW	11% Inverter 89% Fix	1,50%	0.134	3,434	0.572
Ghana	93	3 - 4, 52 units 5- 6, 30 units 6 - 7, 29 units	3,5 kW 5 kW 7 kW	53% DC VSD 47% Fix	18,00%	0.14	1,919	0.39
Colombia	93	2 - 3, 61 units 3- 4, 73 units 5 - 6, 33 units >7, 24 units	2,5 kW 3,5kW	73% Inverter 27% Fix	5,00%	0.12	1,098	0.374
Costa Rica	159	2 to 3, 26 units 3 to 4, 47 units 5 to 6, 40 units 6 to 7, 38 units >7, 8 units	3,5 kW 5 kW 7kW	90% inverter 10% Fix	5,00%	0.243	883	0.064

Sources: Discounts: The interest rates for the life cycle value of the product (https://tradingeconomics.com/country-list/interest-rate?continent=asia) Electricity Tariff: country database



Methodology and assumptions

- 2-3 capacity classes with the highest distribution of appliances were selected for each country
- Energy efficiency is uniformly shown in EER*
- For the refrigerant emission analysis, the following assumptions are used
 - Annual leakage rate (ALR) = 5%
 - End of life emissions (EOL) = 95 %
- Energy efficiency categorization:
 - Energy efficiency (EE) was categorized in the country analysis with **lower** (<3.5) **and higher EE** (>3.5)
 - EER 3.5 defines "no regret" level, as it is higher or at the same level of current MEPS and (average) LCC lower for all countries
 - A MEPS of EER 3.5 has advantages for all countries and end consumers due to lower emissions and LCCs

^{*}Energy efficiency is uniformly shown in EER applying a simplified conversion factor EER = SEER / 1,2 for countries where SEER data was present Source: SEER conversion: https://www.nrel.gov/docs/fy11osti/49246.pdf; https://en.wikipedia.org/wiki/Seasonal_energy_efficiency_ratio;<a href="https://en.wikipedia.org/wiki/Seasonal_energy

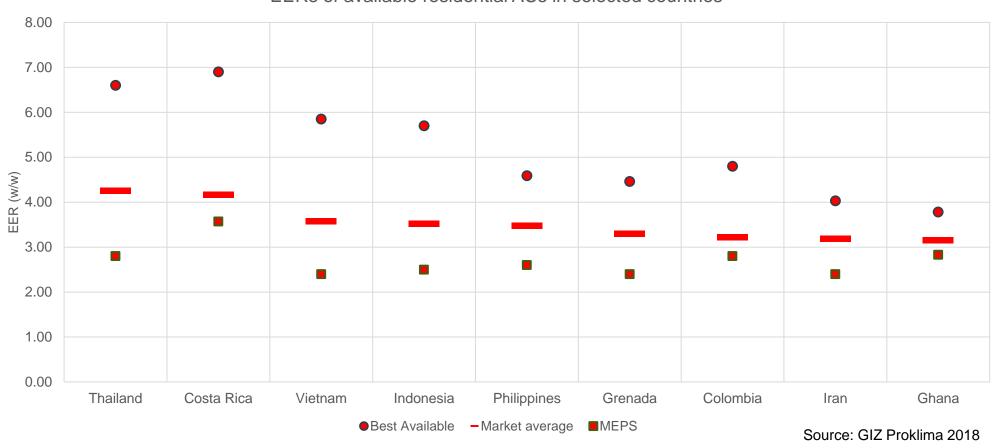
Limitations

- Data sample size varies from country to country
- Data collection only during a defined period of four months
- Appliances offered in selected consumers stores do not necessarily indicate the representative market share of a model (e.g. units sold in 'B to B' might contain additional models and different inverter /fix-speed ratio)
- Efficiency metrics were converted for inverter splits from SEER to EER to allow comparison (which is an approximation given differences in test conditions and measured temperature bins across countries)
- Missing key countries (e.g. India, China) still missing yet, but will be included

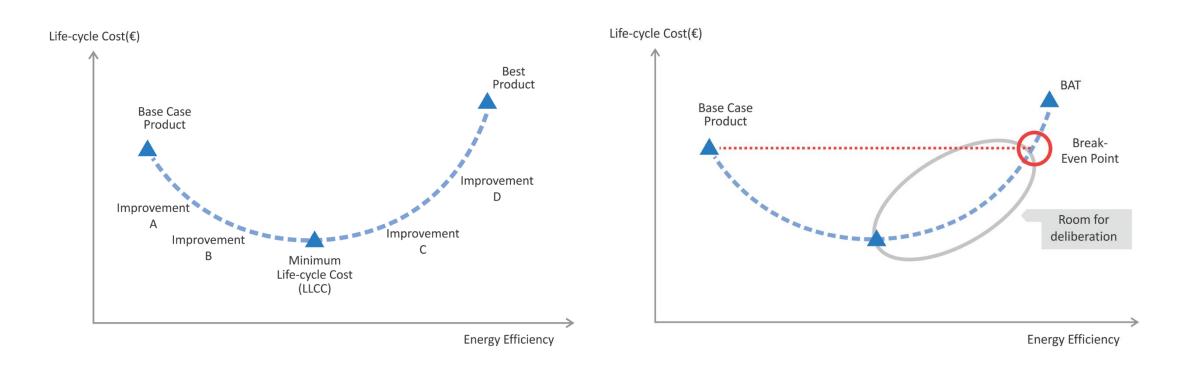
Key Findings

- Large differences between countries (average per country according to sample for 3-4 kW splits)
 - Total Equivalent Warming Impact (TEWI) from 6 77 t CO₂ eq per appliance
 - Energy Efficiency Ratio (EER) per country from 3 to 4.3
 - Unit price from 367 to 760 USD
 - Lifecycle Costs (LCC) from 815 to 15,740 USD
- While countries with higher EER don't have the highest unit prices, countries with low unit price have lower EER
- In all countries units with EER >3.5 have lower LCC than units with lower EERs, suggesting that
 MEPS can and should be set above 3.5 across all countries

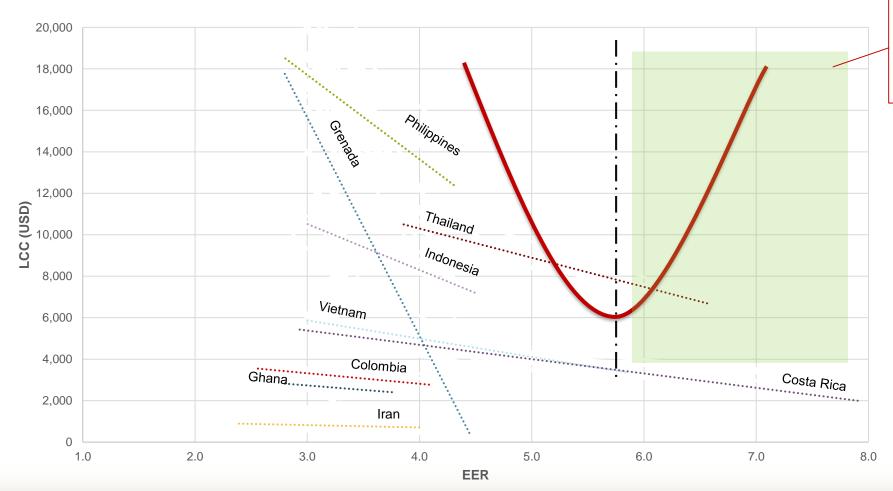
Key Findings (2)


- EER and LCC: Upfront prices are only a small portion of LCC in most countries, therefore high energy efficiency units will lower the total LCC.
- In countries with highly subsidized electricity and low LCC, upfront prices matter more, so low electricity prices are a barrier to higher energy efficiency.
- Most of the countries use R22, R410a and increasingly R32 as refrigerants, indicating huge potential for more climate-friendly refrigerants.
- In some countries, sold units range below the MEPS, raising questions of regulatory compliance.

Efficiency of split ACs



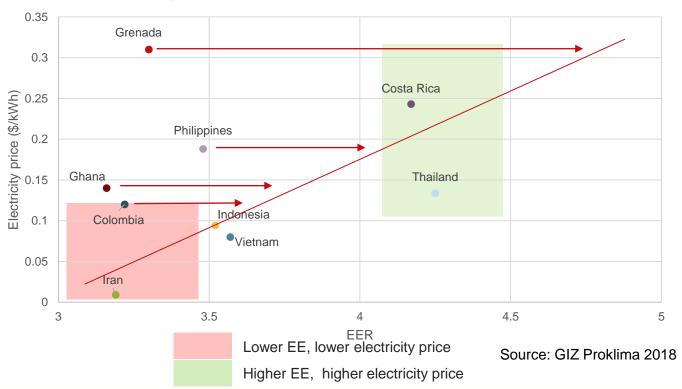
Cost effectiveness of split ACs

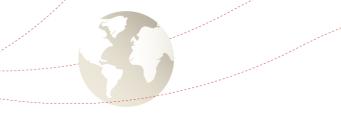


Source: Coolproducts.eu (2013). Improving on the Least Life Cycle Cost criterion for a doubling of energy savings

Cost effectiveness of split ACs

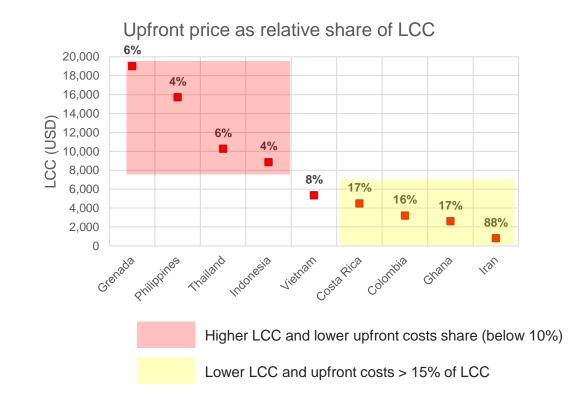
The LCC of the units in each of the countries need a shift into this region for the total cost effectiveness of the unit





Cross-country comparison: EER vs Electricity Price

Electricity prices differ widely across countries



"Limited competition"

Cross-country comparison: LCC vs. Unit Price

LCC differ widely across countries

- "Too cheap": Appliances unit costs lower than 10% of LCC → appliances with better EER will have strong impact on lowering LCC: Grenada, Philippines, Thailand and Indonesia
- "Price matters": Countries with lower LCC and unit price over 15% of LCC: Markets more sensitive to higher appliance prices → Costa Rica, Colombia, Ghana and Iran

Source: GIZ Proklima 2018

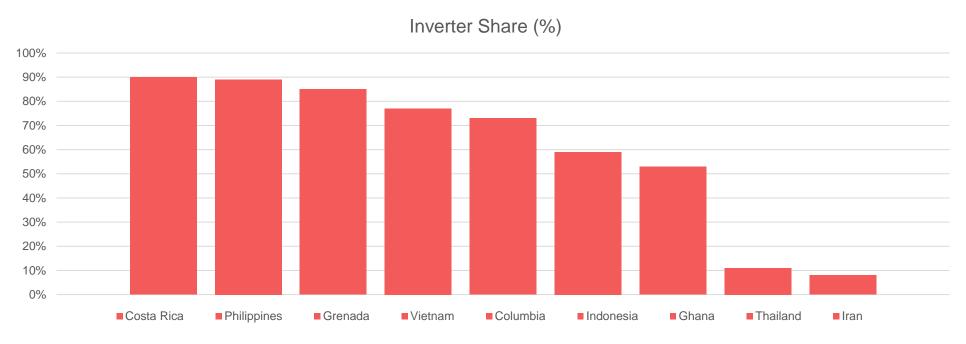
Unit pricing across countries

A sample brand was chosen with the same appliance cooling capacity and brand presence in most countries (not necessarily the same model, same EER);

Conclusions:

- For the same brand and capacity there is a wide price range among the countries with price difference of more than 100% (from 395 to 951 USD)
- Competition in the market seems to be the key price driver, while costs for energy-efficient technologies seem to have little influence on prices (market with highest EER, has lowest unit price)
- Feedback from countries shows that other factors are more influential than energy efficiency such as brand reputation, design, noise level

	EER	Unit price	
Indonesia	4.24	395	
Colombia	3.46	773	
Vietnam	3.41	449	
Philippines	3.41	751	
Iran	3.32	939	
Costa Rica	3.26	951	
Ghana	3.00	665	


Source: GIZ Proklima 2018

Inverter share per country

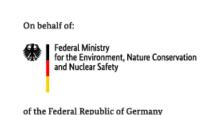
The share of inverter technologies (DC and AC VSD) compared to fixed non-inverter type between the displayed units was analyzed.

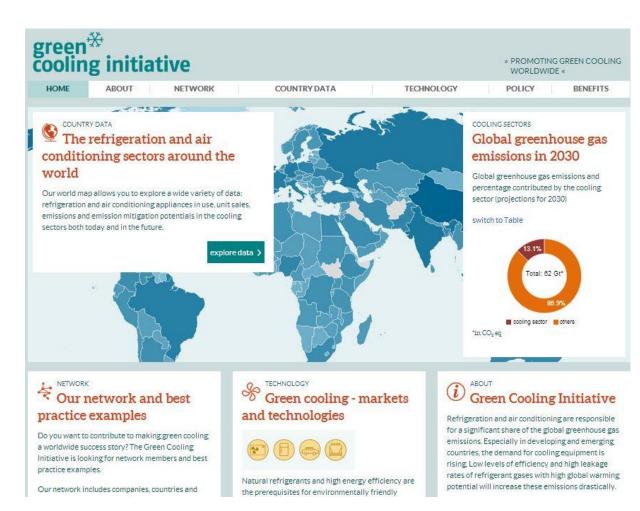
^{*} Analysis based on the available data

Source: GIZ Proklima 2018

Thank you for your attention!

Join our Webinar on detailed results of split AC analysis on **27 June 10 AM CET**, registration soon on our website at:


www.green-cooling-initiative.org


Have a look at our GIZ Proklima projects and publications at:

https://www.giz.de/expertise/html/4809.html

Further information:

Philipp.Munzinger@giz.de

ANNEX 1: LCC calculation

The cost analysis is done based on the LCC method

$$LCC = Initial \ Costs(IC) + Operating \ Costs(OC)$$

- Estimation of operating cost (OC)
 - Lifetime: 8 years (based on average lifetime modelled for developing countries)
 - Runtime: Based on Green Cooling Initiative RAC database
 - Emission factor: based on the IGES data and data from countries
 - Electricity prices from energy authorities
 - LCC calculation

$$LCC = IC + (\frac{OC}{(1+discount)^{lifetime}})$$


- Discount rate: current discount rates from countries
- Focus on cooling capacity class of 3-4 kW for comparative cross-country analysis

ANNEX 2: Total Equivalent Warming Impact (TEWI)

- The emission scenario is modelled with TEWI
- Emissions from the energy consumption of the unit and the refrigerant leakage is considered for the TEWI analysis
- Direct emission include annual refrigerant leaks of a system, end-of-life disposal leakage and operational leakage
- Indirect emission include emissions from electricity generation and material manufacturing emissions (which are not included as they are generally <1% of total emissions)

Source: Guideline for life cycle climate performance, 2015 (IIR)