

1. Introduction: Saft and ESS 2. Specifying the need 3. Designing a solution 4. The Hushagi BESS 5. Operational experience and results 6. Lessons learnt

Who is Saft today?

GROUP PROFILE

100 years of history

Leadership position on 75-80% of revenue base

9.7% invested in **R&D** with **3** main technologies; primary lithium, lithium-ion & nickel-cadmium,

€744m revenue FY 2017

GLOBAL PRESENCE - SALES

Global presence

Where we fit in Total

We serve multiple customer segments for specific applications

ACEF 2018 Manila

Energy Storage Solutions (ESS)

Frequency regulation

Hybrid Power Generation

Peak Shaving

Intensium® Max+ 20 Power & Medium Power

Module Synerion® 24 E/M/P

Energy Storage System Unit (ESSU)

Container

NMC/NCA blend technology Gemini module (2 x Synerion modules in series) Rated voltage 48V

- Voltage 630-867V
- 1 MBMM for all BMMs control

Mastering the Value Chain

■ Battery and System technology mastership

Application understanding

☐ Integration & project competence

Optimium system sizing and configuration

■ System and performance warranties

☐ Energy efficiency, low Opex

☐ Reliability and long life

■ Bankability

Saft Intensium® Max & Mini footprint

Faroe Islands Wind-Battery project

SEV: vertically integrated utility

- Target 2020: 75% renewables with hydro & wind
 - 60% reached in 2015

New 12MW wind farm with ESS in 2015

- Total wind capacity 18MW
- 30% of total generation capacity
- 18% of yearly energy consumption
 - 42% hydroenergy, 40% thermal generation

Long term vision

- Two-fold increase of energy consumption by 2030
- Target: 100% renewables

Requirements

- Volatility of wind generation
 - Impact on voltage and frequency
 - Stress on diesel generation to compensate short term fluctuation
- Lack of inertia

Substitution of synchronous generation by inverter based generation

Priority for ramp control

maximum

1MW / minute

upramp

downramp

Schematic overview of battery system

SEV project – BESS description

BESS = 2 containers IM20P 2.4 MW

+

1 PCS ENERCON 2.1MVA + LEMS

2 Intensium Max 20P		
Energy	707 kWh	
Continuous discharge power	2 400 kW	
Continuous charge power	1 500 kW	
Nominal voltage	623 V	
Voltage range	525V - 700V	

Enercon Smart Container			
Apparent power	2300 kVA		
AC Voltage	LV: 400V MV: 20 kV		
DC Power	2 400 kW		
DC Voltage Range	345 – 705 V		
DC Current	1000 A		

Simulation results

_	Compliance of 1MW /min ramp rate	> 99%
_	DC roundtrip efficiency	97.6%
-	AC roundtrip efficiency including PCS & auxiliaries	86.2%
_	Total efficiency losses of wind energy generated	0,22%
_	Avge daily energy throughput of BESS	261%
_	Capacity loss after 20 years operation	20,9%

Impedance increase after 20 years

83%

Results (1/4) - Battery operation

- About 80MWh charged during 40 days
- represents 300% daily throughput
 (2 MWh per day / 700kWh battery)
- Maximum battery power frequently required

Results (2/4) – Impact on the electricity System

Results (3/4) – Benefit for the electricity system

Results (4/4) - Curtailment

Lessons learnt

Operation of the SEV system with 85% of load covered by wind is possible and stable

3 main business case levers:

- A small ESS to reduce CAPEX
 Managing short term variability needs power, but only little energy
- 2. Very high wind harvesting

 Avoidance of > 6000 MWh of diesel generation
- 3. Avoidance of other grid investments

