Presentation Details			
Track Title	TRACK 5: Symposium on COVID-19 and Energy Sector		
Session Title	Session 5.3: Covid-19 and the Energy Sector: Impacts on Different Economic Sectors		
Session Date and Time	Thursday, 18 June 2:00 – 3:30 pm		
Presenter	Econas Sdn Bhd		
	Khalid Bahsoon – Managing Director/Founder		
Title of your Presentation	Medical Infectious Waste Changes		

What is Infectious Hazardous Waste

Types of Infectious Hazardous Waste to be treated

- Infectious waste: waste contaminated with blood and other bodily fluid
- Pathological waste: human tissues, organs or fluids, body parts and contaminated animal carcasses
- Sharps waste: syringes, needles, disposable scalpels and blades, sharp bins etc
- Contaminated Waste: Masks, Gloves, PPE (COVID 19 specific)

The major sources of health-care waste are:

- hospitals and other health facilities
- laboratories and research centers
- mortuary and autopsy centers
- animal research and testing laboratories
- blood banks and collection services
- nursing homes for the elderly

High-income countries generate on average up to 0.5 kg of hazardous waste per hospital bed per day

Low-income countries generate on average 0.2 kg.

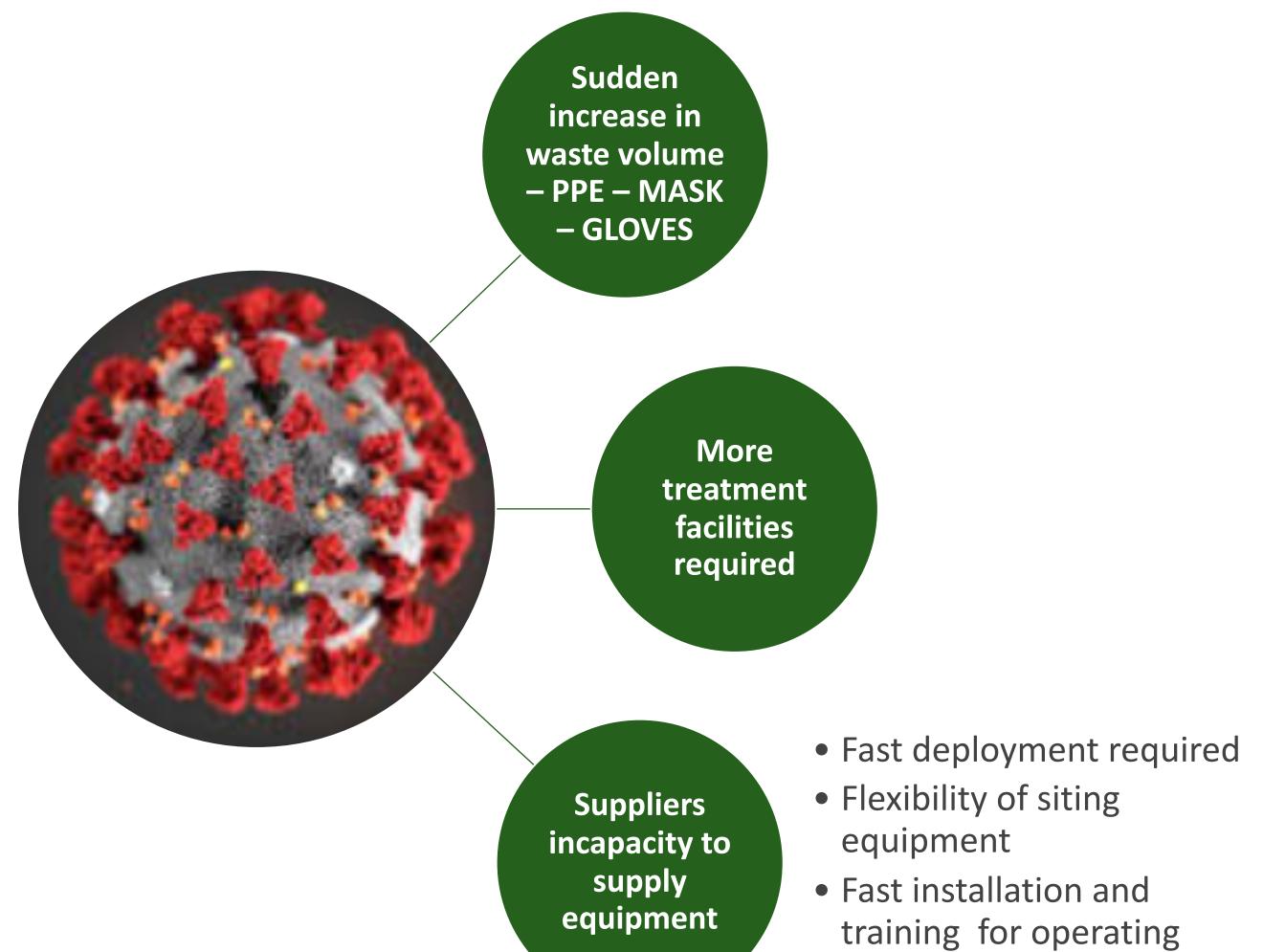
Objective in treating Infectious waste & Types of Treatment

Objective

• Selecting safe and environmentally-friendly management options, to protect people from hazards when collecting, handling, storing, transporting, treating or disposing of waste.

Types of Treatment

- Microwave Sterilisation
- Autoclave Sterilisation
- Steam treatment integrated with internal mixing
- Medical waste incineration Burning ash residue
- Pyrolysis Systems


WHO's view

• Where feasible, favouring the safe and environmentally sound treatment of hazardous health care wastes by autoclaving, microwaving, steam treatment integrated with internal mixing, and chemical treatment **over** medical waste incineration

Needs and Issues due to COVID19

equipment

POSSIBLE QUICK SOLUTION – DIRECT FEEDING OF RAW MEDICAL WASTE TO CEMENT KILNS?

READY INFRASTURCTURE – QUICK DEPLOYMENT

RAW Medical Waste DIRECT FEEDING to Cement Kilns with NO PRE-TREATMENT

NOT RECOMMENDED

CEMENT FUEL
ACCEPTANCE CRITERIA
VERY STRINGENT

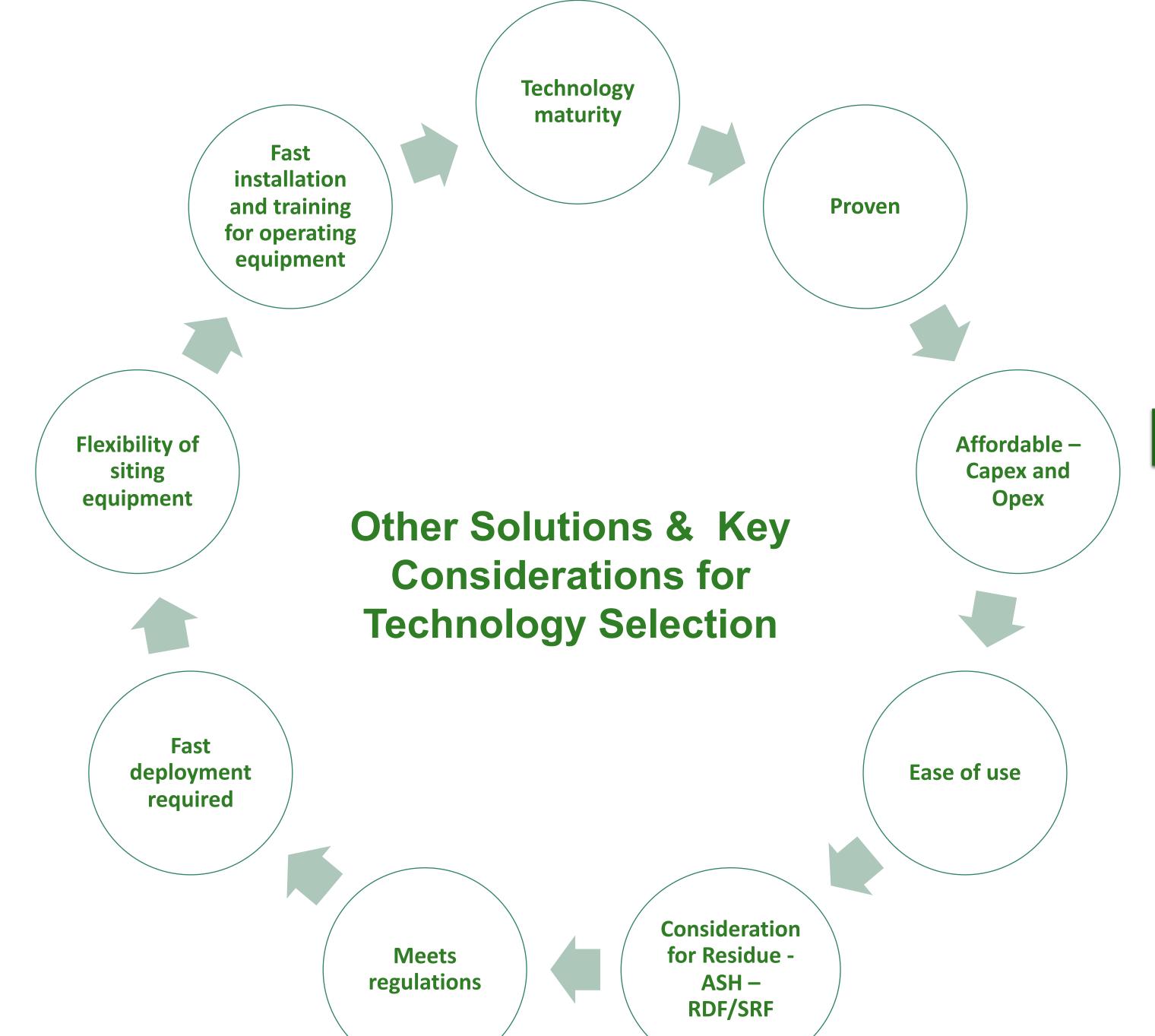
FEEDING SYSTEMS
WOULD NEED
MODIFICATION

STRICT REGULATIONS SOP

CONTAMINATION RISK VERY HIGH PRIOR TO TREATMENT IN KILN

AFTER
CEMENT KILN
TREATMENT
MEDICAL
WASTE IS
NO LONGER
INFECTIOUS

Medical Waste SANITISIED BY PRE-TREATMENT - Residue to Cement Kilns as RDF/SRF



Cement Fuel Acceptance criteria very stringent for RDF/SRF

NO CONTAMINATION

Technologies that potentially can meet the above criteria

Microwave

Autoclave

Mini-review Article

 $\mathbf{W}\mathbf{M} @ \mathbf{R}$

DSAGE

Microwave as an emerging technology for the treatment of biohazardous waste: A mini-review

(aste Management & Research 017, Vol. 35(5) 471-479) The Author(s) 2017 eprints and permissions: agepub.co.uk/journalsPermission OI: 10.1177/0734242X16684385 purnals sagepub.com/home/wmr.

Klaus Zimmermann

Waste Management & Research 35(5)

UNITED NATIONS

WHO & UN recommend to use technologies that don't consume valuable resources such as electricity, fuel, water

Technology Review Microwave vs Autoclaves – Klaus Zimmerman

Table 1. Advantages/disadvantages of conventional and sophisticated microwave technologies.

	Conventional microwave	Sophisticated microwave	Autoclave
Cost of device	Low	High	High
Energy consumption	Low	Low	High
Water consumption	None	Low	High
Control of inactivation process	Difficult	Very good	Very good

Table 2. Summary of the environmental aspects of treatment technologies (adapted from UNEP, 2012).

Technology	Air	Water	Solid residue
Autoclaves	x	xx	x
Batch microwave	Х	X	X
Continuous microwave	X	x	x
Frictional heat	X	x	x
Dry heat treatment	X	X	x
Incinerators	XXX	xx*	XXX
Alkaline hydrolysis	X	XXX	x
Chemical	xx	xx	X

x: minimal concerns; xx: some concerns; xxx: significant concerns.

Table 3. Comparison of treatment costs of sophisticated microwave vs autoclave.

	Microwave	Autoclave
Assumed weight of waste/day	150 kg	
Accumulated weight of waste/year	54.75	tons
Maximum of volume/run	60 L	80 L
Power input	6.5 kW	17 kW
Runs per day	12	10
Duration/run	45 min	70 min
Energy consumption/run	3.3 kWh	12 kWh
Energy consumption/day including standby	40.9 kWh	142.4 kWh
Assumed price/kWh	€0.2/kWh	
Energy costs/day	€8.16	€28.48
Energy costs/year	€2,978.4	€10,395.20

Conclusion: Microwave technology was overall more environmentally friendly and more cost effective

^{*}Treatment of the incinerator's flue gas cleaning wastewater.

Medical Waste Input

Autoclave

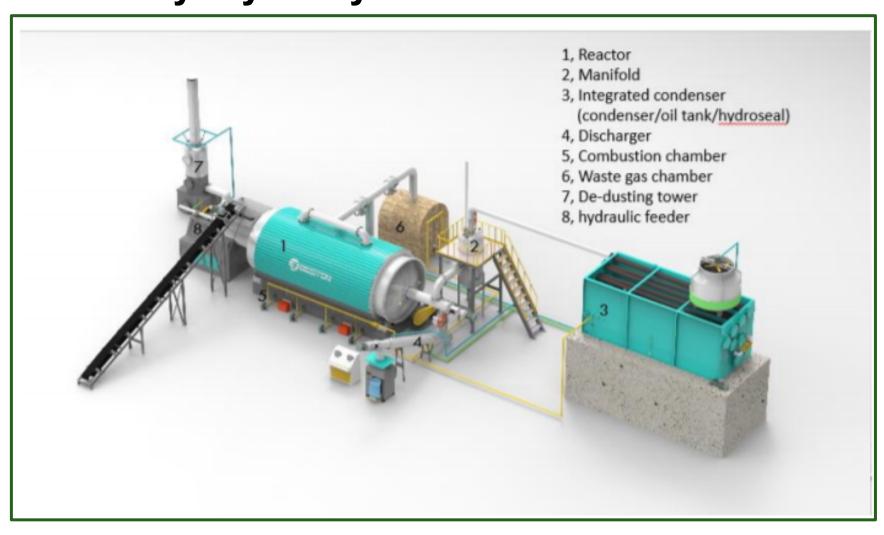
Recommended Process Flow

Medical Waste Residue

Recycling or final Disposal

Recycling of plastic residue

Pyrolysis – Plastic to oil

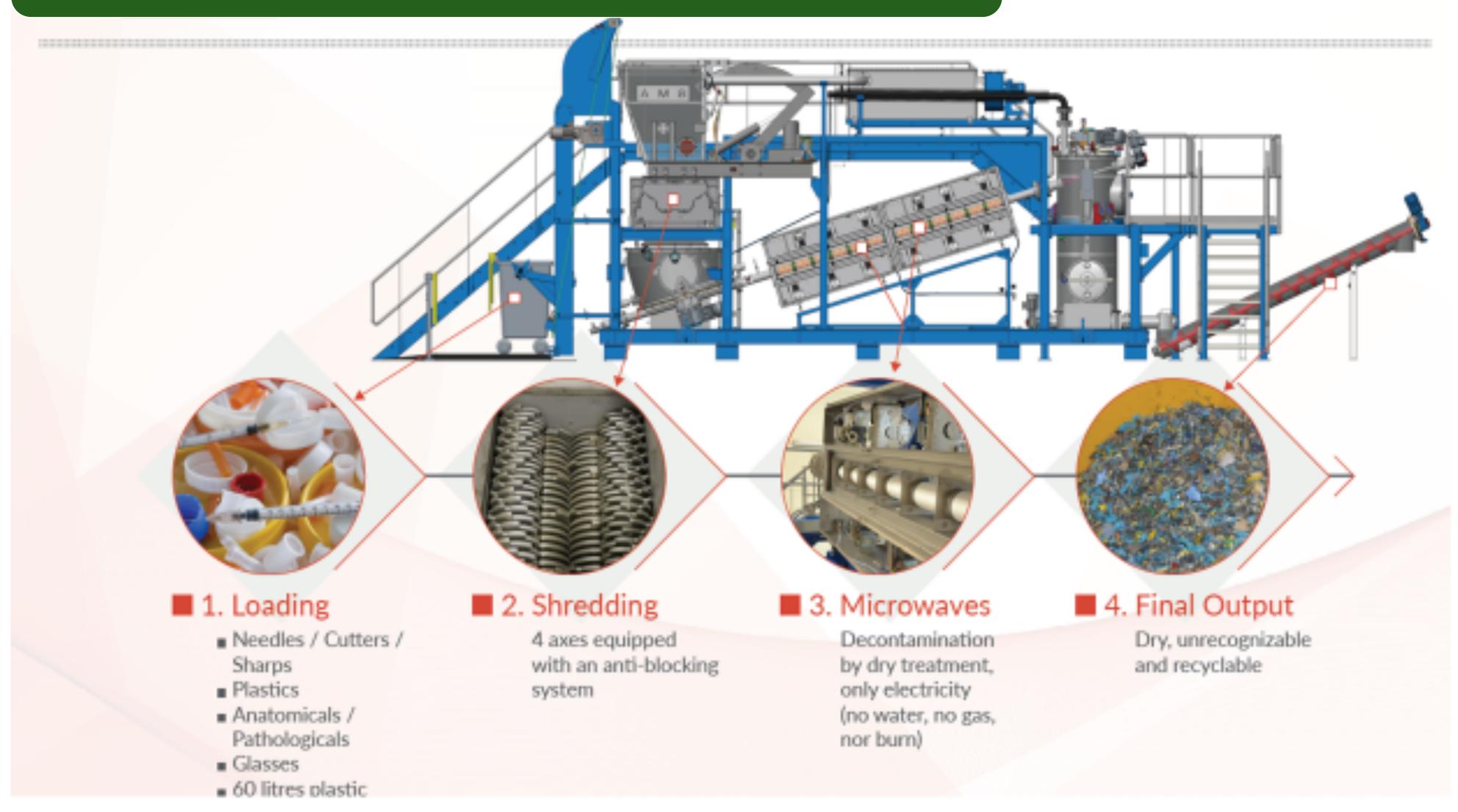

SRF/RDF Cement Kiln

Scheduled Waste To Energy

Sanitary Landfill

Secured Landfill

Pyrolysis System to Oil



Pyrolysis oil

Used and sold as fuel Refine into non-standard diesel

Flow-Diagram of Microwave System

Parameters: 100°C during 60 ±15 minutes to achieve 6 log 10 bacteria reduction.

Benefits / Advantages of Microwave Technology

Simple to use: automatic operations and continuous-flow process

Easy monitoring for operators - touch screen control panel

Spare parts and local maintenance staff available, tele-maintenance, remote and Internet monitoring and on-site quality control challenge (SCBIs)

Low environmental impact:
no radiation, low odour, low
noise and air emission
controls

Eco-friendly: uses only electricity; no waste water rejected; no air emission, radiation, gas or chemicals

Easy to install and relocate; requires 2 days for assembly and start-up

Volume reduction by more than 80% and up to 15% weight reduction

Waste output is dry,
unrecognizable,
decontaminated,
homogeneous, potentially
recoverable and recyclable

Automatic alarms and maintenance scheduled

Automatic weighting of containers and process capacities calculation

Temperature sensors, screw speed control & microbiological efficacy testing

Fast deployment and flexible siting

Case Study – Microwave supply - Malaysia

Two Units ordered from Europe – 250 kg per hour – 24 hours operation – 6,000 KG per day per Machine

Ready stock – shipment Europe to Malaysia

•	Total days from order to installation	40	days
•	Installation	10	days
•	Shipment from Europe to Malaysia	30	days

Manufacturing from order

 Total days from order to installation 	80	davs
 Installation 	10	days
 Shipment Europe to Malaysia 	30	days
 Manufacturing time 	40	days

MUST DO !!!!!

Prepare for the future to ensure Readiness for Fast Deployment

- 1) Identify technology and suppliers
- 2) Regional Manufacturing of Technology is important to ensure:
- Fast deployment
- Develop regional expertise
- Develop regional expertise for training, installation and operations
- Contribution to local economy
- 3) Flexible Technology various available process sizes
- 4) Capacity availability of technology to meet needs
- 5) Ease of siting
- 6) Ease of operations

Questions and Answers

Thank You

Khalid Bahsoon – Managing Director/Founder Econas Sdn Bhd kb@econas.com.my

