

GOVERNMENT OF INDIA MINISTRY OF NEW AND RENEWABLE ENERGY

Approaches to Drive Distributed Solar Market in Asia Learning from India

Anurag Mishra, Energy Team Leader, USAID/India

June 19, 2020

Asia is set to become global capital for solar power by 2050

Solar the Most Common Distributed Energy Resource Available in Asia https://www.picfair.com/pics/05134753-solar-photo-voltaic-panels-at-ghandruk-in-the-himalayas-nepal-being-used-to

India National Solar Mission

Target 60 GW Utility Scale

40 GW Rooftop Solar

Achievement

2.3 GW Rooftop Solar

Slow growth of rooftop solar in India, story is same across Asia

Key Challenges Impacting Deployment of Distributed Solar

These issues are not unique to India

Potential solutions

- Quantify real benefits of Distributed Solar/Rooftop
 Solar
- Distribute these benefits equitably among stakeholders- utilities and consumers
- Enhance the benefits of Distributed Solar
- Monitor and adjust schemes as market developsbenefits of Distributed Solar/Rooftop Solar will change over time

Alternate Compensation Model- "Value of Solar" analysis for Gujarat

Value of Solar: Determine what is the average benefit (and cost) of DPV exports to the power system

Capacity

Energy

Generating Capacity

Environmental

a. Reduced Energy Value with Increasing Solar deployment

Results for Gujarat

	Base Case (INR/MWh)	MNRE Goals (INR/MWh)
Energy	4,247	3,956
Generation Capacity	4,694	10
Transmission Capacity	4	5
Env and Health	4,2012-9,375	
Total Value	14,157-15,928	9,183- 10,954

b. Reduced Capacity Value with Increasing Solar Deployment

Base Case MNRE Goals d. High Environmental Benefits

RTS+ Storage- An Incremental Effort to Derive Higher Value

Benefits of RTS+ Behind-the-Meter Storage

RTS+ Storage- Considerations for India

- Regulatory decisions can enable Indian DISCOMS and customers seize the opportunity
- Determining the desired role of DPV-plus-storage is an important first step.
- Customizing rules and requirements based on the characteristics of the DPV-plus-storage system is a key strategy to promote fairness.
- Current state net energy metering (NEM) policies do not incentivize storage deployment
- Tariff design is an important tool to align the interests of DPV-plus-storage customers with the broader power system in India
- Indian regulators can enable business model innovation for DPV-plus-storage systems.
- Existing DPV regulations in India can be used as foundation for designing DPV-plus-storage interconnection rules.

AN OVERVIEW OF BEHIND-THE-METER SOLAR-PLUS-STORAGE PROGRAM DESIGN: WITH CONSIDERATIONS FOR INDIA

Owen Zinaman, Thomas Bowen, and Alexandra Aznar U.S. National Renewable Energy Laboratory

June 2020

https://www.nrel.gov/docs/fy20osti /74131.pdf A product of the USAID-NIKEL partnership Contract No. IAG-17-2050

http://www.solarcompanies.com/how-the-himalayas-are-lighting-up-with-solar-power/

It's time for Nature

Thank You