ADB^{_}

TA 6563: Regional Support to build Disease Resilient and Energy efficient Centralized Air-conditioning Systems

Disease Resilient, Smart, and Energy-efficient Centralized Airconditioning (CAC) Systems for Public Buildings in Developing Member Countries

17th June 2021

Dr. Yashkumar Shukla Team Lead ADB TA 6563 ACCELERATING THE LOW-CARBON TRANSITION IN ASIA AND THE PACIFIC

ADB

Background

"Disease resilient and **energy-efficient** centralized air-conditioning (CAC) systems with **smart digital systems** in Developing Member Countries"

Approach

- Pilot projects and demonstration through Innovation Challenge
- Knowledge products
- Awareness through videos and training workshops

ACCELERATING THE LOW-CARBON TRANSITION IN ASIA AND THE PACIFIC

ADB

Indoor Enviro . .

vironmental Quality				Marginally
		Aspirational	Acceptable	Acceptable
Parameters	Linite		Classification	
	Units	Class A	Class B	Class C
CO,	ppm	Ambient + 350	Ambient + 500	Ambient + 700
PM 2.5	μg/m³	<15	<25	<25
PM 10	µg/m³	<50	<100	<100
СО	ppm	<2	<9	< 9
туос				
* (equivalent to	µg/m³	<200	<500	<500
isobutylene)				
CH2O	µg/m³	<30	<100	-
SO ₂	µg/m³	<40	<80	-
NO ₂	μg/m³	<40	<80	-
O ₃	µg/m³	<50	<100	-
Total Microbial Count	CFU/m ³	Indoor ≤ ambient	Indoor ≤ ambient	-
Occupant	07	00	80	

90

80

%

Refrigerant Management in CAC Approach to Minimize Climate Impact of Refrigerant use in **Centralized Air Conditioning Systems** Reduce need for Integrate alternate **Climate-friendly** approaches CAC systems Refrigerants Minimize • Use CAC • Minimize capacity by systems with quantity of better design of no refrigerants refrigerants buildings • Use Hybrid CAC Use natural and • Passive design and cooling climate-friendly approaches refrigerants systems

ADB

Energy-efficiency in Buildings

Energy, heating & cooling source system BCHP

Fuel Cell Ice storage

Waste-Heat Absorption Heat Pumps Ground (water) source heat pump

Water loop heat pump

Condensing heat recovery of chiller/HP Evaporative cooling system

Distribution sub-system

Fresh air heat recovery Desiccant dehumidification system VFD of fans and pumps

HVAC system terminals

CO2 controlled ventilation Radiant systems, e.g. capillary ceiling, radiant floo DOAS stand-alone fresh air systems Displacement ventilation

Koppen Climate Classification

Energy demand control via passive design

Orientation and shape factor Microclimate environment Roofs, facades, glazing/Window-wall-ratio Shading Airtightness Thermal storage envelope Natural day-lighting Natural ventilation

Internal gains

Energy saving appliances LED lighting ACCELERATING THE LOW-CARBON TRANSITION IN ASIA AND THE PACIFIC

ASIA CLEAN ENERGY FORUM 2021

ACCELERATING THE LOW-CARBON TRANSITION IN ASIA AND THE PACIFIC

Thank you

- Dr. Yashkumar Shukla, Team Lead
- Dr. Yanping Zhou, Air-Conditioning/Energy efficiency Expert
- Ms. Megan Huang,
- Mr. Richie Mittal, Health and Air Quality Expert