

Overview and State of Play on Energy Storage in Asia

ACEF 2023, Manila

14th June 2023

Modini Yantrapati, Senior Consultant – Energy Storage Services APAC

WHEN TRUST MATTERS

An independent assurance and risk management company

Software, platforms and digital solutions

The suite of publications available on dnv.com

The energy transition and the need for flexibility

Energy transition will impact power flows and power quality

Energy transition will result in **larger fluctuations** in supply and load – mainly in electricity markets Large number of **inverters** (PV solar) will result in **voltage issues** Both developments put pressure on **reliability of electricity supply**

Energy storage provides solutions for various players

5

Storage is essential for the inclusion of variable renewables in electricity

World utility-scale electricity storage capacity

Flexibility options

8

- TSOs/DSOs
- Utilities
- End users
 - Commercial & Industrial
 - Consumers

Energy storage technologies Classification

Energy Storage Applications

Energy Storage Applications

11 DNV ©2021

Example flywheel project: US – 20MW/5 MWh plant – 200 flywheels

Source: http://beaconpower.com/stephentown-new-york/

Energy Storage in Conventional Power Systems

- Traditional Power Systems have a very limited energy storage system
 - Kinetic Energy in Rotating Generators
 - Pumped Hydro
- Consequence of near "zero" storage :
 - Overcapacity
 - Lower asset utilization
 - Reduced operational efficiency
 - Reduced "Hosting Capacity" for "Variable Energy Resources" (PV, Wind...)

Annual average capacity factor of selected electricity generating technologies (2005-15)

Ideal system characteristics for storage

Levelized Cost of Storage (LCOS) as a Comparison Index

- LCOE is typically used to assess the cost of electricity from different power plant types. In this analysis it has been transferred to storage technologies and therefore the term LCOS is used.
- It enables comparison between different types of storage technologies in terms of average cost per produced/stored kWh.

Input Variables	Elements	Example values	
Investment costs [\$]	Specific cumulative investment cost * rated power	700 - 1500 \$/kW * rated power	
Annual total costs in year t [\$]	Operational costs (in %) * Investment costs) * Investment 2% * Investment costs	
Produced electricity in each year [kWh]	Rated power * Equivalent full-load hours * Efficiency	Rated power *1,460 h/a * 80%	
Technical lifetime [years]	Technical lifetime	50 years	
Interest rate (WACC)	Discount rate	8%	

- time, other technologies could have new opportunities if they can compete with lithium-ion battery prices.
 Long-duration energy storage can significantly enhance the
 - significantly enhance the utilization of renewable energy sources

As the power system evolves and

the role of storage changes over

Figure 4. Capital cost for energy (\$/kWh) versus capital cost for capacity (\$/kW) for various technologies. Technologies with low power-related costs (but high energy costs) may be better suited for short-duration applications, whereas technologies with higher power-related costs and low energy related costs may be more competitive in longer-duration applications. Anticipated costs may change as technologies evolve and are commercialized.²

Source: NREL, Storage Futures Study, Key Learnings for the Coming Decades

2021 LCOS (\$/kWh) Comparison - 100 MW & 1,000 MW

From the 2021 results,

×

*

 ∇

*

0

Δ

*

the gaps between LCOS values across technologies except for lead acid narrow as the duration increases from 2 to 10 hours.

Figure ES-4. Comparison of LCOS (\$/kWh) by Technology, Power Capacity, and Duration

2030 LCOS (\$/kWh) Comparison - 100 MW & 1,000 MW

By 2030, As duration increases, LCOS for all technologies are estimated to decrease to their minimum at ~ 10

×

*

 ∇

 \diamond

0

Δ

*

Figure 6.5. LCOS Results for 100 MW and 1,000 MW Storage Systems, 2030 Values

ESS Overview in Asia – Pacific excl. ASEAN

Country	ESS capacity as of 2020	ESS Targets by 2030	Incentives	Business Models
Mainland China	33.1 GW of ESS	~120 GW for ESS and 47 GW for battery-specific	Government and province-level subsidies and grants. Priority status to storage + RE projects at permitting stage.	Energy Arbitrage, Frequency Reserve; Contingency Reserve
Australia	3.2 GWh	6 GWh	Rebates and subsidies for residential and small installations	Energy Arbitrage in NEM; Frequency response; contingency reserve
Japan	In January 2023, Japan announced 17 billion Japanese Yen worth of subsidies for BESS installations and water electrolysers via an application process New installations of 1MW and above capacity			Supply-Demand Adjustment Market, wholesale electricity market, capacity market and via individual trading
India	Build-Operate-own (BOO)/ Transfer (BOOT): SECI floated and awarded the first 500MW/1GWh BESS in the Rajasthan region. NTPC awarded a 3GWh tender to Pumped hydro storage on a 25-year basis Funding for 4GWh of grid-scale batteries in its 2023-2024 annual expenditure budget			Ancillary services
South Korea	8.6 GWh	25GW/127GWh storage target by 2036. Plans to increase ESS capac for grid stability and deman response.	et (1) Higher-weighted renewable energy certificates (RECs) for ESS projects; (2) Peak-shaving 'special tariff plan' for ESS installed behind the meter	KEPCO announced utility- scale ESS services such as ancillary services, power line deferral services, and transmission line congestion controls.

First Utility Scale Flow Battery 2022

- Commissioning has taken place of a 100MW/400MWh vanadium redox flow battery (VRFB) energy storage system in Dalian, China
- The biggest project of its type in the world today, the VRFB project's planning, design and construction has taken six years.
 https://www.energy-storage.news/first-phase-of-800mwh-world-biggest-flow-battery-commissioned-in-china/

ASEAN grid connections plan signals more ESS opportunities

ASEAN overview

Country	ESS capacity as of 2022	ESS Targets by 2030	Incentives	Business Models		
Singapore	200 MW	1 GW	EMA's Intermittent Pricing Mechanism (IPM) is a potential driver for ESS uptake	Energy arbitrage through time- of-use (ToU) tariffs; primary and contingency regulation reserve; and demand-side management.		
Thailand	The first private sector initiative in the country to integrate utility-scale wind power (10 MW) generation with a BESS (1.88 MWh) was led by BCPG subsidiary, Lom Ligor, and was supported by the Asian Development Bank (ADB). A second storage initiative was sponsored by Blue Solar, a solar-focused Thai renewable energy company which deployed a 42 MW DC solar + 12 MW / 54 MWh ESS hybrid system. Under contract to provincial electric utility PEA, third-party developers are installing a few standalone BESS systems to support grid-constrained locations.					
Taiwan	Mainly pumped hydro and ~10 MW electrochemical ESS	Demand for ~600 MW by 2025 related to ancillary services	All ancillary services are procured by Taiwan Power Company through bilateral contracts.	Fast response; regulation reserve; spinning reserve; supplemental reserve		

Example from Thailand: Transmission deferral with ESS

Example from the Philippines: Romblon 16MW Microgrid (Solar PV+ BESS+ Diesel)

- The Isnad of Tablas has 150000 inhabitants.
- New hybrid system allowed the island to have stable energy and less dependency from Diesel.

Developments and Trends

- Asia Pacific (APAC) maintains its lead in building on a power capacity (gigawatt) basis, representing 44% of global additions in 2030. China leads in deployments in the region, driven by local targets and compulsory renewable integration policies.
- Customer-sited batteries both residential and commercial and industrial (C&I)– are also expected to grow at a steady pace. Australia is leading currently with Japan having a sizeable market.
- Pumped hydro makes a comeback attracting more investment than other long-duration storage technologies India and Thailand with their capacity additions.
- Co-located renewables-plus-storage projects, in particular solar-plus-storage, are becoming commonplace globally.
- Ability of storage to provide firm capacity and time-shifting is a primary cost driver for costeffective deployments.

Thank you!

WHEN TRUST MATTERS

DNV

Modini.Yantrapati@dnv.com +65 / 97274249

www.dnv.com

26 DNV ©2021