ASIA CLEAN ENERGY FORUM 2023

Navigating toward a Carbon-Neutral Future through Clean Energy Solutions 13-16 June

Spotlight Session Green Hydrogen: Its Development, Status and Prospects

Thursday, 15 June | 2:00 - 5:30 p.m. (GMT+8)

2023

GREEN HYDROGEN INNOVATION Center

Potential and Opportunities

Dr Mridula Bharadwaj Dan Millison

ISA ADB Technical Assistance Programme

ISA ADB TA PROGRAMME

01

ISA PROGRAMME FOR Green hydrogen

Objective: To accelerate solar hydrogen production, utilization and trade in ISA member countries

ISA ADB TA PROGRAMME

Role of **INTERNATIONAL SOLAR ALLIANCE (ISA)**

Support in assessment and facilitate solar H2 readiness level in member countries related to-

01.

Enabling policy and regulatory framework

02.

Identifying technological gaps; 'go-to' resources

03.

Facilitating investment environment for commercially viable solar H2 projects

ISA ADB TA PROGRAMME

04.

Identification of viable projects pipeline across solar hydrogen value chain

05.

Creating global synergies & leveraging partnerships with public and private sector

Green Hydrogen will play a key role in decarbonisation of hardto-abate sector

- fertilizers H2 demand has potential to grow
 - more than 300% by 2050

ISA ADB TA PROGRAMME

 Global H2 demand stood at 94 MT in **2021** - mainly from petroleum refining and production of chemicals and

• GH currently accounts for **less than 1%** of total hydrogen produced, is expected to increase exponentially in future • With increasing capacity of GH, the cost of electrolyser is expected to reduce sharply

Green hydrogen is not a "silver bullet"

GH has inherent value for long-term time-shifting and location-shifting of variable RE. There is a merit order of applications, starting with replacement of grey / black hydrogen in petroleum refining and chemical manufacturing.

* Via ammonia or e-fuel rather than H2 gas or liquid

Source: Liebreich Associates (concept credit: Adrian Hiel/Energy Cities)

ISA ADB TA PROGRAMME

GH was cheaper than grey H2 in Europe last year

- The cost of blue and grey hydrogen in Europe was at USD 8/kg to USD 14/kg a year ago.
- Cost of GH vs. grey / black hydrogen is location-specific
- GH can be as low as USD
 3.5/kg today

Decreases in fossil fuel prices will directly reduce costs for blue and grey hydrogen, but price volatility should be expected. GH is inherently modular like solar, wind, and battery storage Increased deployment will drive down GH production costs!

ISA ADB TA PROGRAMME

Costs as low as USD 1.3/kg by 2030 can be expected in regions with excellent RE

GH cost is a function of electricity & electrolyzer costs & load factors

LCOH of \$3 – 3.5/kg appears feasible today: if buyers will pay \$4/kg there is no cost barrier

Difference in CAPEX does not have significant impact on cost competitiveness when utilization is high

ISA ADB TA PROGRAMME

Cost competitiveness diverges with higher utilization due to differences in electricity prices

Government leadership and decisionmaking is critical in GH project development

Identify **sites** with good RE sources (solar, wind, hydro etc.)

Choosing appropriate **technology** for electrolysers

Strong government support is needed in site allocation, permitting and control

Governments should assist in securing long-term offtake agreements for early projects to enable project financing

Multilateral agencies such as ISA and ADB can assist in project development through technical assistance and knowledge sharing

ADB can assist governments in RE resource evaluation for site selection, conceptual design, tendering to bring in commercial partners, and financing the major physical components of the project via sovereign and nonsovereign channels, employing blended finance, as necessary.

ISA ADB TA PROGRAMME

GREEN HYDROGEN PROGRAMME Initiatives and Updates

ISA ADB Technical Assistance Programme

ISA ADB TA PROGRAMME

09

Country Level Analysis for Green Hydrogen (ISA- ADB Collaboration)

Key Parameters for readiness level assessment

Market Overview

Holistic overview of demand and supply status and projections for GH

Renewable Energy Assessment

Installed Capacity of Renewable Energy. Solar and Wind Energy Potential

Green Hydrogen Pipeline

Number of projects in pipeline within the country

Hydrogen Consumption

Analysis of current hydrogen consumption Potential of replacing H2/other fossil fuels with green hydrogen

Strategic Intent

Net-zero commitments Monetary commitments Regulations and Standards Mandates and Targets Strategy or Roadmaps

Experience with Infrastructure

Fuel Handling Infrastructure: Existing Infrastructure of pipeline, storage, liquefaction, gasification and transportation within the country and its ports

ISA ADB TA PROGRAMME - ADB Collaboration)

REPORTS

Report on framework to self assess ecosystem readiness in countries to adopt GH2

Africa's Extraordinary Green Hydrogen Potential (ISA-EIB-Africa Union)

European Investment Bank

African Union

ISA ADB TA PROGRAMME

Report launch at COP27, Sharm El-Sheikh, Egypt

Mauritania, Morocco, southern Africa and Egypt show high potential

ISA – ADB framework to assess ecosystem readiness in countries to adopt GH2

Experience with Infrastructure

Fuel Handling Infrastructure Existing infrastructure of pipelines, storage,

liquefaction, gasification and transportation within the country and at its ports

Net Zero Commitments

Whether the country has committed to attaining net zero emissions?

Monetary Commitments

Whether the country has announced financial incentives, such as subsidies, grants, tax breaks, R&D support, etc.?

Regulations and Standards

Whether the country notified regulations and standards for green hydrogen consumers?

Mandates

Whether the country specific mandates for green hydrogen adoption?

Targets

Whether the country has measurable and realistic green hydrogen targets?

Strategy or Roadmap

Whether the country has a Green Hydrogen Strategy / Roadmap / Vision Document?

Strategic Intent

ISA ADB TA PROGRAMME

ISA - ADB framework to assess ecosystem readiness in countries to adopt GH2

Frontrunners

- Announced structured policy for GH, with clear roadmaps, realistic targets
- Strong alignment for GH among stakeholders
- Moderate-to-strong installed RE solutions
- Strong experience with relevant infrastructure

Progressives

- RE rich countries and proximity to ports
- Some countries have strategies with targets, timelines, and monetary commitments
- Lack of standards and certifications
- Moderate experience with relevant infrastructure

ISA ADB TA PROGRAMME

Prospectives

- Excellent RE generation potential
- Exhibit some strategic intent nascent strategy / roadmap
- Low levels of RE deployment
- Announced Net zero targets

Potentials

- Early movers with lack of strategic intent fairly
- Favorable environment for business
- Availability of infrastructure
- Need to strengthen their RE base

ISA SUPPORT TO G20

2023

As countries develop green hydrogen ecosystems, there is a necessity for a knowledge repository that tracks global progress and provides up-to-date information, and learning.

ISA ADB TA PROGRAMME

ISA ADB TA PROGRAMME Global Center of Excellence for Green Hydrogen: A one-stop platform with country-level insights and knowledge repository

Creation of GCoE for GH can help countries in various aspects, the three main pillars of support are detailed below

Knowledge dissemination

Green Hydrogen – GCoE to serve as a one-stop knowledge repository on various topics of Green Hydrogen like:

- Global projects
- Case Studies
- Reports
- Research publications

Best Practices & Learnings

- Access country policies, regulations, standards and code through the portal
- Outreach to stakeholders
- Portal to provide countrylevel insights for green hydrogen along with potential and demand of the green hydrogen

Knowledge dissemination

Green Hydrogen – GCoE will aid developers in providing details about OEMs for Electrolyzers, Fuel Cells, Storage providers, and their products, along with EPC/system integrators, and later identifying possible financing partners

Entire energy community to benefit from Global Center of Excellence for Green Hydrogen

ISA ADB TA PROGRAMME

How GCoE for Green Hydrogen will be different?

GH portals	Knowledge hub	Resources & Initiatives	Country Studies (Deep- dive analysis)	Trainings
H2 council				
European commission				
IRENA				
IEA				
HAI				
GBEP				
GH association				
GHIndia				
IPHE				
GCoE- GH				

ISA ADB TA PROGRAMME

Available

Not Available

17

Progress update- GCoE for Green Hydrogen

Phase 2- Web Development/ Screen Shot

English (United States)	≊ S ×	English (United States)	≅ ຜ່າ
Hi There! Welcome to Global Ce Excellence	nter of	•	
		Global Hydrogen Report 2022	
What should I call you?		Global Hydrogen Report 2021	
My nam	e is John	Here you go, John. Please ref above links. Is there anything help you with?	
I understand that your name is Ja how can I help you today?	ohn.	Thank you, It	was helpful.
Can you share the latest Global H Review	lydrogen w report?	You're welcome, happy to he	lp
end a message.	1	Send a message.	1
i 0 🕤		i 0 0	

• **Al-Chatbot:** This portal will be fully integrated with an Artificial Intelligence (AI) chatbot. The chatbot will answer all clarifications and queries of the user.

• The Al will direct the question, when required, to the host organization for a suitable solution.

• The machine learning algorithm used in this understands the userbehavior and enhances the result accordingly.

Progress update- GCoE for Green Hydrogen

Phase 3- Content Development/ Screen Shot

GENERAL INFORMATION

The Paris Agreement under the UNFCCC has renewed the global commitment to limit temperature rise to 1.5°C and atmospheric carbon discide (CD) concertifiations to 450.2. parts per million (ppm). The Agreement calls for concerted global efforts for rapid economy-wide decarbonization. If the Paris goal is to be fulfilled, actions that are immediate and tangible-need to be faken globals. Growing number of countries are pledging Net Zero emissions to mid-century, which is a positive development for climate change. mitigation.

Energy transformation in electricity generation has accelerated significantly since the turn of the century, and growth in renewable energy, particularly solar PV, in the electricity sector is consistently displacing traditional floasi fuers in nearly all the mature electricity markets. The international Energy Agency (EA) estimates that renewable energy is set to account for almost 95 percent of the increase in global power capacity through 2029. The amount of renewable capacity added over the period of 2021 to 2025 is expected to be 50 percent higher than from 2015 to 2020, driven by stronger support from povernment policies and more ambitious clean energy 1 posts. Rapid scale of renewable energy deployment has been a critical enabler for economies of scale and consequent precipitous drop in the levelized cost of electricity of the associate fectualization. Solar PK without energy storage, is now amongst the cheapest source of electricity in targe markets where government policy and regulatory frameworks support renewable energy development in general, and solar in particular (e.g., India).

Description

in 2023, however, the share of electricity in global final 2 consumption of energy was only 20.4 percent, it is 3 expected to increase to around 50 percent by 2050. Thus, there is clearly a need to decarbonize other forms of energy usage in hard-to-abate sectors to keep the goal of US% alive, which was reiterated at COP 26. Hard-to-abate sectors encompass sheet, carrient, chemicals (including Fertilizer), long-heul road transport, maritime shipping, and eviation.

Key Role

Global Center of Excellence for Green-Hydrogen

Stobal demand for hydrogen has increased since the 1980s, and as of 2021, demand is more than 94 MTPA. 6 and is growing currently at -five percent, Most of the hydrogen currently being consumed is produced from floasil fuels (more than 90 percent) and the cost of production is based on local market costs of cost and natural gas. China is the world's largest consumer of hydrogen, with demand of around 28 MI in 2021, followed by the United States and the Middle East, both at 12 MI of hydrogen demand in 2021. Europe and India trail with a demand close to 8 Mit each.

threefold by 2058.

ISA ADB TA PROGRAMME

The future growth of GH is expected to be led by the increased usage in current as well as emerging applications. Global hydrogen demand has potential to grow more than

OLE OF HYDROGEN

	01	Stakeholder discussions on Ec
Way	02	Deep dive country level consul readiness for accelerated dep
forward Holistic	03	Assess viability of current glol sector in ISA member countrie
overview of the green hydrogen	04	Develop roadmap for production hydrogen across identified ISA 2030, 2040, and 2050
sector and its development	05	Identify ready-to-invest oppor use sectors across identified I provide recommendations
-	06	ldentify stakeholders - across organizations, industry associa

ISA ADB TA PROGRAMME

cosystem Readiness Framework

ultations to assess GH ployment

obal solar/green hydrogen ies, including India

tion/deployment of solar/green A member countries through

ortunities across various end-I ISA member countries and

s ISA membership, peer ciations ASIA CLEAN ENERGY FORUM 2023

Navigating toward a Carbon-Neutral Future through Clean Energy Solutions 13-16 June

Spotlight Session Green H Status al Thursday, 15 Ju

Organized by:

