Urban Micro-grids

Narendra de Silva, PhD.
Electricity Network is the largest machine humans have built
Lanka Electricity Company (Private) Limited

- 600,000 customers
- 250MW peak demand
- 1600GWh of sales
- 1,100km of 11kV network
Future of our world has to be seen through the lenses of four megatrends
Future of our world has to be seen through the lenses of four megatrends.
Clean and Just Transition

Energy Selling business

Selling a reliable service

Geographic Service

Individualized service
Future of Urban Utilities – Innovative technology fix

Present status of electricity grid

Operational as a monolithic structure

Micro-grids in connected and islanded mode

- Urban Utilities to metamorphosize into micro-grids.
- The micro-grids to provide reliability in islanded mode
Urban Micro-Grids – Mode of Operations

1. On-grid Operations
 a. Peak Shaving mode – Battery is charged and discharged to shift the peak
 b. Solar intermittency mitigation mode – Battery is used for transient mitigation

2. Off Grid Operations
 a. Fault outage mode – Battery is used for fault ride-through
 b. Planned outage mode – Battery is used to maintain supply for longer durations
Urban Micro-Grids – On Grid operation for peak shaving
Urban Micro-Grids – On Grid operation for transient Mitigation
Urban Micro-Grids – Operation during fault

- Non-essential load disconnection
- ADSM Level II
- ADSM Level I
- Peak shaving reserve – Distributor’s share
- Outage reserve – Customer’s share
- Transient mitigation reserve – T/G share
- S
- Battery
- Load
- ADSM Level I
- ADSM Level II
- Non-essential load disconnection
Urban Micro-Grids – Operation during planned outage

- Non-essential load disconnection
- Peak shifting reserve – Distributor’s share
- Outage reserve – Customer’s share
- Transient mitigation reserve – T/G share

- ADSM Level I
- ADSM Level II
- Non-essential load disconnection

ADR Level I & II

Battery

S

DG
Commercial Model for Micro-Grid Operations

Prosumers
- Pay for transient mitigation

DR Consumer
- Pay for enhanced reliability
- Rebated for Demand Control Responses

Consumer
- Pay for enhanced reliability

Distribution Utility
- Pay for load management
- Pay for enhanced Reliability (below standard performance)

Micro-Grid Services
- Reliability Payment
- ADSM Payment
- Pay for transient mitigation
- Reliability payment
- Peak shaving Payment
Thank You
Campus Micro-Grids – Design

- 800kWh Battery Bank
- 250kW Solar Installation
- 630kVA Transformer
- Diesel Generator, 320kVA
- Diesel Generator 2, 200kVA
- 400V 3 phase Bundled Conductor distribution line
- Demand Response in the building
Campus Micro-Grids – Design
Campus Micro-Grids – Project Cost

<table>
<thead>
<tr>
<th>Item</th>
<th>Rate</th>
<th>units</th>
<th>Qty</th>
<th>Amount, USD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rooftop Solar + inverter</td>
<td>1500</td>
<td>USD/kW</td>
<td>200</td>
<td>300,000</td>
</tr>
<tr>
<td>Battery</td>
<td>700</td>
<td>USD/kWh</td>
<td>800</td>
<td>560,000</td>
</tr>
<tr>
<td>MicroGrid Inverter</td>
<td>300</td>
<td>USD/kW</td>
<td>400</td>
<td>120,000</td>
</tr>
<tr>
<td>Sub total - microgrid</td>
<td></td>
<td></td>
<td></td>
<td>980,000</td>
</tr>
<tr>
<td>Rooftop Solar + inverter</td>
<td>2500</td>
<td>USD/kW</td>
<td>20</td>
<td>50,000</td>
</tr>
<tr>
<td>Battery Inverter</td>
<td>200</td>
<td>USD/kWh</td>
<td>9</td>
<td>1,800</td>
</tr>
<tr>
<td>AC grid simulator</td>
<td>120000</td>
<td>unit</td>
<td>1</td>
<td>120,000</td>
</tr>
<tr>
<td>oscilloscope</td>
<td>50000</td>
<td>unit</td>
<td>1</td>
<td>50,000</td>
</tr>
<tr>
<td>power analyser</td>
<td>35000</td>
<td>unit</td>
<td>1</td>
<td>35,000</td>
</tr>
<tr>
<td>1kVA AC load simulator</td>
<td>6000</td>
<td>unit</td>
<td>5</td>
<td>30,000</td>
</tr>
<tr>
<td>1kVA DC load simulator</td>
<td>6000</td>
<td>unit</td>
<td>1</td>
<td>6,000</td>
</tr>
<tr>
<td>Line emulator</td>
<td>500</td>
<td>unit</td>
<td>2</td>
<td>1,000</td>
</tr>
<tr>
<td>PV simulator (5 kW)</td>
<td>6000</td>
<td>unit</td>
<td>2</td>
<td>12,000</td>
</tr>
<tr>
<td>Open source inverters</td>
<td>15000</td>
<td>unit</td>
<td>2</td>
<td>30,000</td>
</tr>
<tr>
<td>Sub Total -Research Lab</td>
<td></td>
<td></td>
<td></td>
<td>335,800</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>1,315,800</td>
</tr>
</tbody>
</table>