Energy efficiency policy measures and their impact on Cold Storages in India

13 June 2023
Asia Clean Energy Forum, Manila
Table of Contents

1. Why Efficiency in cold chain
2. Overview: Cold Chain in India
3. Policy options: Cold Chain Energy Efficiency
4. Deep dive on shortlisted option
Efficient cold chain have multiplier effect: reduced food losses, environmental impact and enhanced farmers’ income

Agriculture is a critical pillar of India’s economy
- Contributing ~20% of GDP and providing livelihood to 44% of population
- Largest producer of milk and dairy products
- 2nd largest producer of fruits and vegetables, fish

However
- Only 4% of the country’s produce benefits from cold-chain
- Approximately 30% of fruit and vegetables are lost or wasted each year
- Only 1% of India's horticulture produce is exported

Efficient cold chain can
- Reduce harvest and post harvest losses which are estimated to be around INR 440 billion annually
 - Reduce food loss
 - Create a positive ecological / environmental impact
 - Directly impact and enhance farmers’ income
Cold Chain: Overview of key components

Packhouse
Handling sorting, grading, washing, drying, weighing, packaging, pre-cooling and staging.

Ripening Chambers
Completes the ripening process of some fruits to make further palatable.

Retail
Large retailers may use Walk-in cold room to store goods.

Cold Storages
Refrigerated facility or warehouse used for the storage of temperature-controlled substances.

Reefer Trucks
Refrigerated truck used for transporting goods.

Transport
May or may not be Reefer.
Cold Chain capacity in India: 2017-18

Total Installed: 35.19 Million Tonnes (MT)

Cold Storages, 99.4%, 35 MT

- **Vapor Compression Cycle, 95%**
 - **By Technology**
 - Ammonia based, 74.6%
 - HFC/HCFC based, 25.4%
 - Pack house: 0.015 MT, 0.01%
 - Reefer vans: 0.135 MT, 0.3%
 - Ripening chambers: 0.04 MT, 0.1%
 - **By refrigerant**
 - Sorption
 - Evaporative cooling
 - Ice making

- **Cold Chain capacity in India: 2017-18**
 - Based on ICAP study, capacity factor for cold chain facilities taken from NCCD

Overview

- 75% of the cold storage capacity is Ammonia based, these are largely bulk cold storages
- Ammonia based systems are centralized systems consisting of a compressor, condenser, evaporators and expansion valves
- Ammonia based systems are dominated by the unorganized players (80-85%), where different components such as (compressors, evaporators, condensers, controls etc.) are procured from different vendors and are assembled at site

- ~25% of the cold storage capacity is HFC/HCFC based, largely modular type
- Pack house, reefers and ripening chamber use HFC/HCFC based refrigeration systems only
Cold Chain Capacity – growth estimates

- **Cold Storages**, 99.4%, 35 MT
 - 2017:18: 35.19 MT
 - 1.69 X increase
 - 2037-38: 59.74 MT

- **Reefers**, 7%, 4 MT, entirely based on HFC/HCFC systems

- **Pack houses**, 8%, 5 MT, entirely based on HFC/HCFC systems

Takeaways

<table>
<thead>
<tr>
<th>Market</th>
<th>Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold Storages</td>
<td>- Would continue to dominate the segment till 2037-38</td>
</tr>
<tr>
<td></td>
<td>- Need to focus on creating new efficient capacity as well as explore options for retrofitting existing capacity</td>
</tr>
<tr>
<td>Pack houses</td>
<td>- Need to focus on Vapor compression technologies</td>
</tr>
<tr>
<td>Ripening chambers</td>
<td>- Need to focus on HFC/HCFC based systems (others)</td>
</tr>
<tr>
<td>Reefers</td>
<td>- Most of the capacity is expected to be created in next decade</td>
</tr>
<tr>
<td></td>
<td>- Accordingly, there is need focus on new capacity addition to avoid lock in of inefficient infrastructure</td>
</tr>
<tr>
<td></td>
<td>- Technologies such as zero energy cooling chambers (ZECC), solar based cold storages are still nascent and evolving, potential to promote such technologies</td>
</tr>
</tbody>
</table>
Cold Chain: Annual energy consumption, split by facility type (conservative scenario)

% share of annual energy consumption

Pack houses, 0.04%
Reefers, 19.42%
Cold Storage, 78.34%
Ripening chamber, 2.20%

2017-18: Total annual energy consumption: 5.284 Twh

2037-38: Total annual energy consumption: 18.78 Twh

Total: 3.61 X increase

Takeaway

Need to prioritise policies across Cold Storages, Reefers and Pack-house segment

- All number sourced from ICAP study, except for reefers.
- For 2037-38, reefer stock of 100K units has been taken for calculations, instead of 400K taken in ICAP study.
Policy options for Cold Chain Energy Efficiency

Opportunities
- 30+ opportunities across technologies, equipment, system, envelope, materials etc.

Shortlisting principles
- Energy saving potential
- Market readiness, technology profile
- CLASP’s expertise

Policy options
- Equipment / appliance specific policies
- Program that focuses on technology upgrades
- Guidelines for Operation and Maintenance (O&M), system design, equipment and material selection
Prioritisation of Energy Efficiency Opportunities

- S&L of walk-in cold rooms
- S&L of HFC/HCFC compressors
- Inclusion of cold storages into PAT
- S&L of evaporator fans
- S&L of Reefer/Truck refrigeration unit
- Technology replacement program Thermal to electronic expansion valve
- Guidelines for design, O&M of cold chain facilities
- Guidelines for materials (envelope, door etc)
- Guidelines / awareness for energy efficient post-harvest practices
- Energy Efficiency guidelines, performance standards for Ammonia Chillers
- S&L of PUF / Insulation materials
- S&L of Ammonia Chillers
- Technology upgradation – electronic Controls, automation etc

Notes:
- Savings are based on 2037-2038 ICAP reference scenario
- Size of circle indicates relative energy saving potential
- For guidelines, a flat savings of 0.1 Twh has been assumed (except ammonia)
- Ease of execution is assessed on market readiness, technology profile, dependance on other govt. agencies etc

Bubble of this size represents energy savings of 0.72 TWH
#1: Energy Efficiency Labelling of refrigerant compressors used in Cold Chain applications

S
- India already has a well-developed S&L ecosystem
- Bureau of Indian standard (BIS) has standards on refrigerant compressors

W
- Ongoing revision of ISO standards, Non-existent lab capacity
- Lack of consensus among stakeholders on efficiency indicators, high variability of refrigerants used

O
- Organized market, dominated by select OEMs
- Global supply chains – potential for harmonization and replication elsewhere

T
- Program to be introduced as voluntary
- Variation in use compressor use cases / ambient conditions may be difficult to normalize

Preliminary assessment has been encouraging

Policy Options

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Annual sales</td>
<td>~ 40,000</td>
</tr>
<tr>
<td>2 Annual growth</td>
<td>10% – 15%</td>
</tr>
<tr>
<td>3 Energy saving potential</td>
<td>~ 20%</td>
</tr>
<tr>
<td>4 Cumulative energy saving potential (2024 - 2030)</td>
<td>> 0.25 Twh</td>
</tr>
</tbody>
</table>

1
- Enabling set of BIS standards (IS 5111)

2
- As per limited consultations, there is potential to adopt COP as energy efficiency indicator
#2: Energy Efficiency Labelling of Walk-in Cold Rooms (WICR)

S
- India already has a well-developed S&L ecosystem
- Bureau of Indian standard recently released for Walk – in Cold Rooms

W
- Limited lab capacity for testing
- WICR are complex systems with multiple equipment / envelope components

O
- Rapid / exponential market growth due to formalization of Agri supply chains in India

T
- Market is dominated by unorganized players
- There may be a need to build capacity of unorganized players – may be resource intensive

Preliminary assessment has been encouraging

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Installed stock (units)</td>
<td>~ 1,50,000</td>
</tr>
<tr>
<td>2 Annual sales</td>
<td>~ 23,000</td>
</tr>
<tr>
<td>3 Annual growth</td>
<td>10% – 15%</td>
</tr>
<tr>
<td>4 Baseline annual energy consumption (existing stock)</td>
<td>~3 TWh</td>
</tr>
<tr>
<td>5 Cumulative energy saving potential (2024 - 2030)</td>
<td>> 1.5 TWh</td>
</tr>
</tbody>
</table>

BIS is already conducting stakeholder consultations to explore inclusion of energy efficiency parameter in the standard

Precedence of WICR labelling exists in other countries – best practices can be adopted
#3: Inclusion of Cold Storages under Perform Achieve and Trade (PAT) Program

S
- PAT program is operational, energy saving certificates are being traded
- Provides opportunity to cold storages to undertake efficiency improvement at own pace

W
- Seasonality of operations, operating characteristics may vary by crop type stored
- Baseline audit and target setting is time taking, followed by 3-year long performance cycle

O
- PAT targets may drive energy efficiency as well as adoption of renewable energy
- Technology neutral approach, empowers owners to identify and implement EE measures

T
- Significant portion of the cold storages are unorganized, compliance may not be effective

Strong case for inclusion under PAT, feasibility study needs to be conducted

1. **Description** | **Created**
 - 1 Cold Storage capacity (TR) | 5,21,705
 - 2 Total number of cold storage (Nos) | 7,901
 - 3 Specific power consumption of compressor (estimated, KW/TR) | 1.2
 - 4 Total Electrical connected load (MW) | 612
 - 5 Annual energy consumption (TWh) | 4.02

2. **Energy saving potential as per past studies: >10%**
3. **Cumulative energy saving potential (2024 - 2030): ~2 TWh**
Key takeaways

Standards and Labelling (S&L) of cold chain components with high market growth

Why:
• To avoid lock-in of inefficient stock
• Can form the basis of Minimum Energy Performance Standards (MEPS) in future

What:
1. Compressors:
 - Used in almost every cold chain system
 - Highly organized market
 - Potential to harmonize polices across countries
2. Walk-in Cold Rooms (WICR):
 - Increasing adoption in India
 - Ongoing global efforts to label WICR

Energy saving targets for select large Cold Storage facilities

Why:
• There is a huge variation in cold storage technology type and vintage: technology neutral approach required to address the diversity
• Cost efficient energy saving measures may vary by type of technology, commodity stored

What: Inclusion of Cold Storages under PAT program
• Mandated entities can go for energy efficiency interventions as per respective marginal cost of efficiency improvement; or
• Simply buy certificates from the market
Thank you!

Any questions?

ppandey@clasp.ngo