Energy efficiency policy measures and their impact on Cold Storages in India

13 June 2023 Asia Clean Energy Forum, Manila

INTERNAL. This information is accessible to ADB Management and staff. It may be shared outside ADB with appropriate permission.

Table of Contents

2

3

Why Efficiency in cold chain

Overview: Cold Chain in India

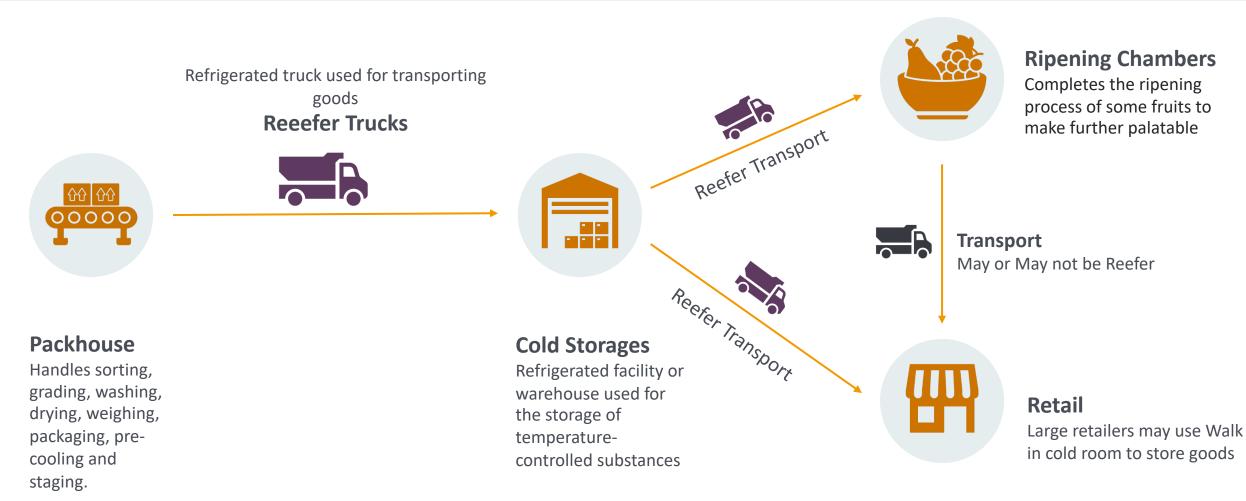
Policy options: Cold Chain Energy Efficiency

Deep dive on shortlisted option

Efficient cold chain have multiplier effect: reduced food losses, environmental impact and enhanced farmers' income

Agriculture is a critical pillar of India's economy

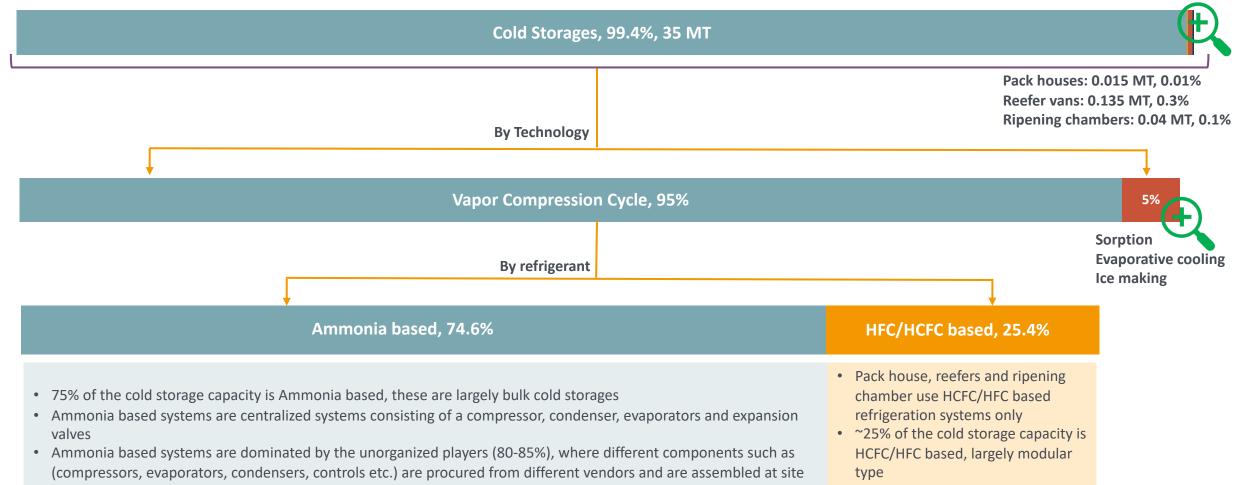
- Contributing ~20% of GDP and providing livelihood to 44% of population
- Largest producer of milk and dairy products
- 2nd largest producer of fruits and vegetables, fish


However

- Only 4% of the country's produce benefits from cold-chain
- Approximately 30% of fruit and vegetables are lost or wasted each year
- Only 1% of India's horticulture produce is exported

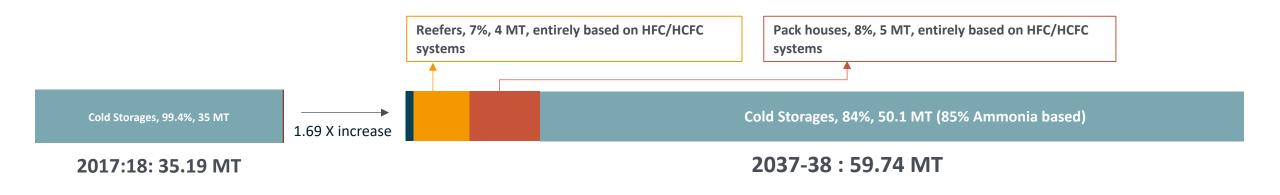
- Reduce harvest and post harvest losses which are estimated to be around INR 440 billion annually
- Reduce food loss
- Create a positive ecological / environmental impact
- Directly impact and enhance farmers' income

Cold Chain: Overview of key components



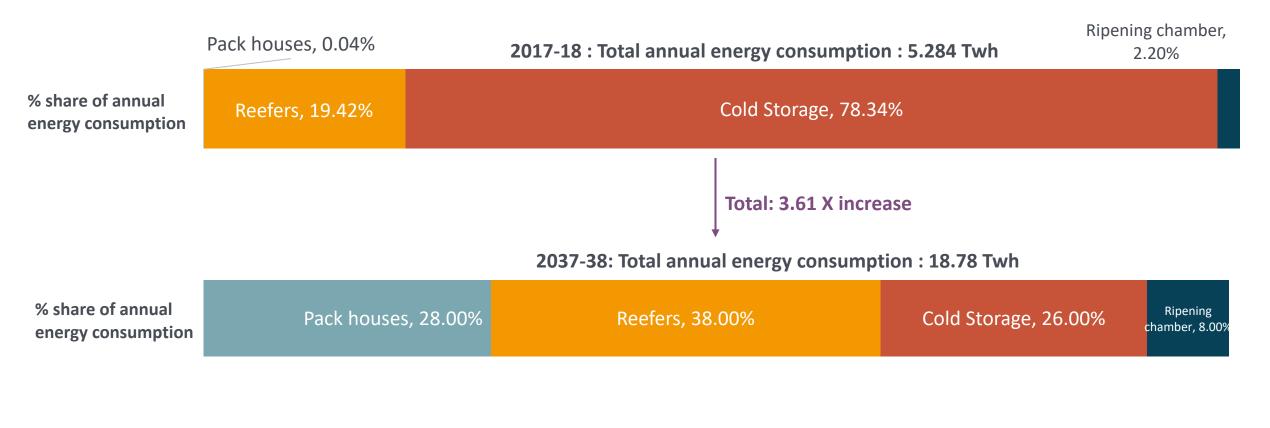
5

Cold Chain capacity in India: 2017-18


Total Installed : 35.19 Million Tonnes (MT)

INTERNAL. ThiBAROHAROH SARCessurfly ocapagity factor for scale chains facilities take of the permission.

Cold Chain Capacity – growth estimates



Takeaways

	Market	Technology	
Cold Storages	 Would continue to dominate the segment till 2037-38 Need to focus on creating new efficient capacity as well as explore options for retrofitting existing capacity 	 Need to focus on Vapor compression technologies Ammonia Systems (for cold storages) HFC/HCFC based systems (others) 	
Pack houses	 Most of the capacity is expected to be created in next decade 	 Technologies such as zero energy cooling chambers 	
Ripening chambers	 Accordingly, there is need focus on new capacity addition to avoid lock in of inefficient infrastructure 	(ZECC), solar based cold storages are still nascent and evolving, potential to promote such technologies	
Reefers			

INTERNAL Base drom a study with appropriate permission.

clasp Cold Chain: Annual energy consumption, split by facility type (conservative scenario)

Need to prioritise policies across Cold Storages, Reefers and Pack-house segment Takeaway

• All number sourced from ICAP study, except for reefers.

INTERNAL. THE GAT AND THE SATE AND THE SATE

Policy options for Cold Chain Energy Efficiency

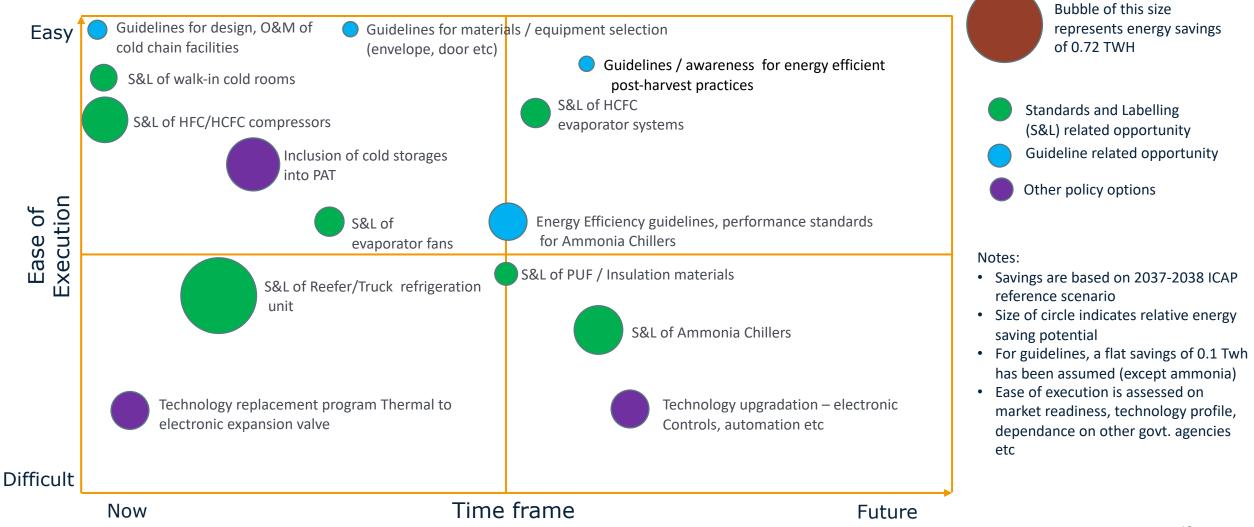
Insulation material Guidelines Star Labeling Compressors Envelope **Condensers Expansion valves** Reefers **Condensers Evaporators / Fans Control systems Ammonia Chillers** Walk in cold rooms **Energy Benchmarking PAT** program

Opportunities

 30+ opportunties across technologies, equipment, system, envelope, materials etc.

Shortlisting principles

- Energy saving potential
- Market readiness, technology profile
- CLASP's expertise



Policy options

- Equipment / appliance specific policies
- Program that focusses on technology upgrades
- Guidelines for Operation and Maintenance (O&M), system design, equipment and material selection

Prioritisation of Energy Efficiency Opportunities

#1: Energy Efficiency Labelling of refrigerant compressors used OCIASP in Cold Chain applications

S	 India already has a well-developed S&L ecosystem Bureau of Indian standard (BIS) has standards on refrigerant compressors 	
N	 Ongoing revision of ISO standards, Non-existent lab capacity s Lack of consensus among stakeholders on efficiency indicators, high variability of refrigerants used 	
0	 Organized market, dominated by select OEMs Global supply chains – potential for harmonization and replication elsewhere 	
Т	 Program to be introduced as voluntary Variation in use compressor use cases / ambient conditions may be difficult to normalize 	

Preliminary assessment has been encouraging

Description		Value
1	Annual sales	~ 40,000
2	Annual growth	10% - 15%
3	Energy saving potential	~ 20%
4	Cumulative energy saving potential (2024 - 2030)	> 0.25 Twh

Enabling set of BIS standards (IS 5111)

As per limited consultations, there is potential to adopt COP as energy efficiency indicator

M/

4

#2: Energy Efficiency Labelling of Walk-in Cold Rooms (WICR)

India already has a well-developed S&L ecosystem Bureau of Indian standard recently released for Limited lab capacity for testing WICR are complex systems with multiple equipment / envelope components

Rapid / exponential market growth due to formalization of Agri supply chains in India

Walk – in Cold Rooms

- Market is dominated by unorganized players
- There may be a need to build capacity of unorganized players – may be resource intensive

Preliminary assessment has been encouraging

	Description	Value
1	Installed stock (units)	~ 1,50,000
2	Annual sales	~ 23,000
3	Annual growth	10% - 15%
4	Baseline annual energy consumption (existing stock)	~3 TWh
5	Cumulative energy saving potential (2024 - 2030)	> 1.5 TWh

BIS is already conducting stakeholder consultations to explore inclusion of energy efficiency parameter in the standard

Precedence of WICR labelling exists in other countries – best practices can be adopted

Policy Options

4

#3: Inclusion of Cold Storages under Perform Achieve and Trade 🕀 clasp (PAT) Program

S	 PAT program is operational, energy saving certificates are being traded Provides opportunity to cold storages to undertake efficiency improvement at own pace
W	 Seasonality of operations, operating characteristics may vary by crop type stored Baseline audit and target setting is time taking, followed by 3-year long performance cycle
0	 PAT targets may drive energy efficiency as well as adoption of renewable energy Technology neutral approach, empowers owners to identify and implement EE measures
T_	 Significant portion of the cold storages are unorganized, compliance may not be effective

Strong case for inclusion under PAT, feasibility study needs to be conducted

	Description	Created
1	Cold Storage capacity (TR)	5,21,705
2	Total number of cold storage (Nos)	7,901
3	Specific power consumption of compressor (estimated, KW/TR)	1.2
4	Total Electrical connected load (MW)	612
5	Annual energy consumption (TWh)	4.02

Energy saving potential as per past studies: >10%

Cumulative energy saving potential (2024 - 2030): ~2 TWh

Key takeaways

Standards and Labelling (S&L) of cold chain components with high market growth

Why:

- To avoid lock-in of inefficient stock
- Can form the basis of Minimum Energy Performance Standards (MEPS) in future

What:

1. Compressors:

- Used in almost every cold chain system
- Highly organized market
- Potential to harmonize polices across countries
- 2. Walk-in Cold Rooms (WICR):
 - Increasing adoption in India
 - Ongoing global efforts to label WICR

Energy saving targets for select large Cold Storage facilities

Why:

- There is a huge variation in cold storage technology type and vintage: technology neutral approach required to address the diversity
- Cost efficient energy saving measures may vary by type of technology, commodity stored

What: Inclusion of Cold Storages under PAT program

- Mandated entities can go for energy efficiency interventions as per respective marginal cost of efficiency improvement; or
- Simply buy certificates from the market

Thank you!

Any questions? ppandey@clasp.ngo

clasp.ngo