New Business Opportunities from Carbon Neutral & How DL E&C-CARBONCO Approaches

15 Jun 2023 Sang-il Kim General Manager, Head of Sales & Marketing Team I

Speaker Profile

Sang-il Kim

CARBONCO Pte. Ltd General Manager, Head of Sales & Marketing Team I

- 17 years of experience in business development, sales & marketing, and project execution in petrochemical sector and power generation sector
 - Executed 1,000 MW CFPP project as Project Control Manager, and Sales & Marketing Manager of DL E&C
- Leading the project development teams tasked with the business of CCUS, Clean
 Hydrogen and Ammonia in CARBONCO

Table of Contents

- Global Carbon Emission Trend
- Efforts to Achieve Net Zero and New Opportunities
 - Carbon Capture, Utilization, Storage
 - Ammonia/Hydrogen
- Business Approach of DL E&C & CARBONCO
- Project Cases Studies
 - Case 1: Coal-Fired Power Plant "CCU" Project
 - Case 2: Waste Energy Power Plant "CCU" Project
 - Case 3: Desalination Plant CCU Project
 - Case 4: Waste-to-Energy "CCU" Project

DI_ & CARBONCO

Table of Contents

Global Carbon Emission Trend

Efforts to Achieve Net Zero and New Opportunities

- Carbon Capture, Utilization, Storage
- Ammonia/Hydrogen

Business Approach of DL E&C & CARBONCO

Project Cases Studies

- Case 1: Coal-Fired Power Plant "CCU" Project
- Case 2: Waste Energy Power Plant "CCU" Project
- Case 3: Desalination Plant CCU Project
- Case 4: Waste-to-Energy "CCU" Project

DI_ & CARBONCO

Limiting Global Warming to 1.5°C

Over 190 nations and multinational companies have voluntarily agreed to reach net zero by 2050 to minimize irrecoverable climate damages by reaching net zero carbon emission and limiting global warming to 1.5°C above pre-industrial level.

Impacts from 1.5°C vs. 2.0°C Temperature Rise

	Category	Impact	1.5°C	2.0°C	Comparison
acts	Extreme Heat	 Exposure to sever heat at least once every five years 	14%	37%	Зх
Direct Impa	Sea-Ice- Free Artic	 Number of Ice free summers 	Every 100 years	Every 10 years	10x
	Sea-level Rise	 Amount of sea level rise by 2100 	0.40m	0.46m	+0.06m
	Vertebrates	 Vertebrates that lose at least half of their range 	4%	8%	2x
Species	Plants	 Plants that lose at least half of their range 	8%	16%	2x
	insects	 Insects that lose at least half of their range 	6%	18%	Зх
	Ecosystems	 Land where ecosystems shift to a new biome 	7%	13%	2x
Land	• O • Permafrost	 Artic permafrost that will thaw 	4.8Mkm	6.6Mkm	38%
	🧩 Crop Yields	 Reduction in maize harvest in tropics 	3%	7%	2x
Oceans	Voral Reefs	 Decline in coral reefs 	>70%	99%	>29%
	Fisheries	Decline in marine fisheries	1.5Mt	3.0Mt	2x

- ✓ Greenhouse gas ("GHG") emissions has skyrocketed since the industrial revolution, causing global warming and climate change
 - Land and ocean temperature has increased on average of 1.04°C
 - Atmospheric carbon dioxide concentration are 50% higher
- ✓ As a global initiative to mitigate future climate damages, 194 nations have signed 2015 Paris
 Agreement to reduce GHG emissions to net zero by the second half of the 21st century
 - The signed countries represent over 98% of global GHG emissions as of September 2022
 - Every five years, each country is expected to submit an updated Nationally Determined Contribution ("NDC"), which outlines strategic pathway towards net zero

DL & CARBONCO

Source: Climate Council, IPCC

Progress for Net Zero is falling Behind

Announced GHG mitigation measures such as electrification are insufficient to meet the net zero requirements. To bridge the gap, CCUS technology is expected to play an essential by reducing net carbon emissions for carbon intensives industries.

Required CO₂ Reduction by Technology: Net Zero vs. Stated Policy¹

Source: Climate Action Tracker, IEA

1. CO₂ reduction by measures from IEA are adjusted pro rata to the emission gap between the expected emission and warming are based on median value for Policies & Actins (based on current policies) and 1.5C compatible benchmark developed by Climate Action Tracker.

Source: ROK Government Report 2021

Table of Contents

Global Carbon Emission Trend

- Efforts to Achieve Net Zero and New Opportunities
 - Carbon Capture, Utilization, Storage
 - Ammonia/Hydrogen

Business Approach of DL E&C & CARBONCO

Project Cases Studies

- Case 1: Coal-Fired Power Plant "CCU" Project
- Case 2: Waste Energy Power Plant "CCU" Project
- Case 3: Desalination Plant CCU Project
- Case 4: Waste-to-Energy "CCU" Project

DI_ & CARBONCO

[CCUS] Market Size

Net Zero scenario requires the current global CCUS project pipeline to be ramped up nearly five-fold and annual investment to reach US\$100bn by 2030.

CO₂ Capture Capacity: Project Pipeline vs. Net Zero (Mtpa)

Addressable Market

(Annual CO₂ capture capacity)

- ✓ CCUS may be the only economically viable solution for carbon reduction in hard-to-abate sectors such as cement, steel and chemicals, that are facing more imminent regulatory warming and climate change
- ✓ Fossil fuel including coal, natural gas and oil accounts for >60% of the required CO2 capture capacity in 2050
 - The remaining 40% are from industrial process, biomass, oil/gas and direct air capture

IDI_ & CARBONCO

Source: Global CCS Institute, Company disclosure, News run

[CCUS] CO₂ Emission By Industry

Annual CO₂ Emission by Sector

Industrial sectors are the major carbon emitters, accounting for total 24.9% of the total CO₂ emission, led by iron, steel and cement production.

Absolute CO₂ emissions and CO₂ emissions intensity¹

Sources: IEA, McKinsey, News run

1. CO₂ emission intensity is calculated based on 2017 McKinsey report and adjusted pro rata up to 2021 by reflecting growth rate by sector from IEA

IDI_ & C/\RBONCO

2.4

N/A

Other

[CCUS] Growth Catalysts

CCUS market is one of the fastest growing markets with positive outlook that is forecasted to reach the size of US\$4tn by 2050 on a global basis.

1 Supportive Government Policies	 48 jurisdictions implemented or have plan to implement carbon pricing instruments to that can potentially improve profitability of CCUS projects and overcome the green premium CCUS projects are further benefited by favorable policies such as carbon tax, ETS and CCUS de-risking mechanism including contracts-for-difference, incentives and grants
2 Development of Value Chain and Project Pipeline	 Increasing number of industry participants are filling gaps across the CCUS value chain, making the industry more robust and driving momentum for new projects Large capital is flowing into CCUS as industry leaders embrace CCUS as a critical solution to achieve Net Zero by 2050
3 Improvement in Project Economics	 Governments and companies across the globe are collaborating to launch larger-scale CCS projects and expand relevant infrastructures to alleviate bottlenecks and improve economics CCS operation costs are also drastically decreasing due to maturing technologies across the CCUS value chain and scale of economies backed by forward-looking industrial tailwind
4 Technological Development	 Carbon capture and transportation technologies have matured and commercialized through decades of investment and experiences, largely driven by players in the oil and gas industry In order to facilitate the deployment of CCUS solution, there is a growing emphasis on directing R&D support and investment towards carbon utilization and storage technologies to develop economically viable captured CO₂ treatment solutions

Source: Exxon Mobil, Energy Transition Commission, IEA, News run

[CCUS] Supporting Policies Are Being Adopted Globally

CCUS industry may benefit from increasing number of countries that announce more advanced net zero pledges and decarbonization roadmaps, which will form favorable political landscape.

Maj	jor Countries	Net Zer Year	o Target Legal Status	Net Zero Policies	GHG Emission in 2021 (MtCO ₂ e)
*)	China	Pre-2060	•	 14th Five-Year Plan which outlined plans to increase share of non-fossil share of electricity generation to c.39% by 2025 	11,939
	United States	2050	•	 Enacted the Inflation Reduction Act which includes US\$369bn in funding for climate energy 	4,551
$\langle c \rangle$	EU	2050	•	 Outlined "Fit for 55" package including to increase for the share of renewables in energy consumption from 32% to 40% by 2030 	2,658
۲	India	2070	•	 Released the Draft National Electricity Plan highlighting a plan for renewables 	2,537
	Russia	2060	•	 Released the Transport Strategy Until 2030 including measures for energy- efficient or electric vehicles, low-carbon infrastructure, etc. 	1,860
	Japan	2050	•	 G7 members including Japan agreed to decarbonize electricity by 2035 and to end fossil fuel subsidies by 2025 	1,039
Ψ	Iran	N/A	•	 Iran expressed its intension to modify national laws and policies to reform energy consumption patterns during COP26 	681
:•:	Korea	2050	•	 Announced the 10th Electricity Plan setting share of renewable energy to c.23.3% by 2030 	600
55703	Saudi Arabia	2060	•	 Promoting the concept of a Circular Carbon Economy (CCE) to reduce emissions from oil and gas production 	562
٠	Canada	2050	•	 Revised 2030 Emissions Reduction Plan to accommodate its enhanced Paris Agreement Target to reduce emission by c.40% from 2005 	540
*	Australia	2050	•	 Released its Long-Term Emissions Reduction Plan to achieve net zero emissions by 2050 through a green technology-led approach 	352

Legal status: • In law • Proposed • No targets

IDI_ & C/\RBONCO

[Hydrogen] Fuel for the Future

Hydrogen is the only renewable energy source with stable supply that can replace fossil fuel across wide spectrum of industries and will play a central role in achieving net-zero emissions by 2050.

Overview

✓ Hydrogen is mainly used for chemical feedstock and as a low-carbon energy fuels

- Hydrogen is predominately utilized as a feedstock for oil refining, ammonia production for fertilizer, methanol production and steel production
- Application as low-carbon energy fuels includes transport and power generation, in which still requires further technological advancement for wider adoption
- ✓ Hydrogen's value as a versatile solution lies in its potential to play a significant role in decarbonization of hard-to-abate sectors where carbon abatement solutions are challenging to be implemented
 - Hydrogen is a low-carbon energy source, with water being the only byproduct produced during energy transition processes
 - Hydrogen offers a stable supply and mobile applications through fuel cell technology

✓ Hydrogen can currently be produced in multiple forms, ranging from grey (fossil fuels), blue (fossil fuels + CCS) and green (renewable energies), offering a range of options for sustainable energy production

Major Types of Hydrogen

	Grey Hydrogen	Blue Hydrogen	Green Hydrogen
Overview	Produced from fossil fuels, which directly emits CO₂ into the air as they are combusted	Produced from fossil fuels with carbon capture storage ("CCS") technology to limit CO ₂ emission	Produced from water/renewables through application of electrolyser and zero carbon energy
Feedstock	 Fossil fuels (oil, natural gas, coal) 	 Fossil fuels (oil, natural gas, coal) 	Renewable energiesWater
Method	 Steam methane reforming ("SMR") Partial oxidation Coal gasification 	 SMR and CCS Coal gasification and CCS 	ElectrolysisBiorefinery
CO ₂ Emission	🔺 High	V Low	Zero emissions
Process Illustration			↓+

IDI_ & CARBONCO

[Hydrogen] Global Hydrogen Economy

Net zero scenario projects hydrogen to be globally adopted for decarbonization of hard-to-abate sectors, such as steel, cement and chemicals, that are not readily be electrified.

Global Hydrogen Demand by Segments (Mtpa)

Addressable Market by 2050

(CO₂ capture capacity per annum, unless specified otherwise)

- ✓ Hydrogen is expected to play a critical role in achieving carbon neutrality as a versatile and scalable energy fuel/vector with a cumulative abatement of 80GtCO₂ by 2050
- ✓ >60% of the hydrogen demand will be supplied through long distance transport such as international crossborder and domestic long-distance transportation in 2050

Sources: Global CCS Institute, Company disclosure, News run

[Hydrogen] Why Hydrogen?

Securing core technical capability related to hydrogen at early stage would be a key as global transition to hydrogen economy is inevitable but would require improved cost competitiveness and technology developments.

Why Hydrogen?

1 Wide Range of Application	 Hydrogen can be utilized as chemical feedstock and fuel in a range of sectors Offers decarbonization solutions in hard-to-abate sectors where it is challenging to implement abatement solution
2 Stable Supply	 Most abundant element in the universe with a quasi-infinite supply Free from seasonal fluctuations and associated power intermittency
3 High Energy Efficiency	 Suitable for mobility due to high energy capacity per unit fuel weight Hydrogen fuel cells offer higher efficiency up to c.65% vs. 35% from fossil fuel-based generators
4 Mobile & Transportable	The only renewable power source that can be efficiently stored and transported in various forms, scales and methods

Hydrogen Application Cost Competitive Trajectories

Hydrogen is cost competitive in average conditions and regions Hydrogen is cost competitive in optimal conditions and regions

[Hydrogen] Value Chain

Hydrogen covers a wide spectrum of industries from production to end applications, providing opportunities to diverse industry participants.

Sources: Hydrogen Council, IRENA, IEA

IDI_ & CARBONCO

[Hydrogen] Technology Landscape

Hydrogen related technologies are evolving rapidly, projecting strong potential for improved affordability and accessibility across future hydrogen value chain.

Sources: Hydrogen Council, Element Energy for BEIS, DOE Hydrogen Production Roadmap, News run

IDI_ & CARBONCO

[Hydrogen] Global Hydrogen Production

As production technology matures, hydrogen demonstrate strong momentum and growth potential to become a multi-trillion dollar market across the globe.

Overview

- ✓ Hydrogen adoption is expected to grow as hydrogen-based technologies mature and scalability improves
- ✓ As of Nov 2022, 140 countries have announced net-zero targets, and 26 countries have committed to adopt hydrogen as a clean energy vector in their national energy system
- ✓ As of May 2022, over 680 large-scale hydrogen projects have been announced globally with a focus on industrial usage and transport projects
 - 80% of the project pipelines announced full or partial commissioning before 2030
 - The total number of project announcements increased by 146 since end of 2021, demonstrating a strong industry momentum
 - The number of giga-scale production and large-scale projects industrial usage¹ has increased from 51 to 61 and 262 to 332, respectively

Projected Global Hydrogen Production (Mtpa)

1. Giga-scale project is >1 GW or >200 kiloton p.a. of hydrogen production capacity; large-scale project is >1 MW or equivalent

Sources: Hydrogen Council, McKinsey, IEA, IRENA, broker report

[Hydrogen] Energy Efficiency Comparison

Due to its high energy density, hydrogen can be efficiently transported and stored at large-scale. This makes hydrogen the most prominent renewable energy source for sectors that are hard to be electrified due to with high energy requirements.

Energy per Unit Mass by Fuel Source (MJ/kg)

[Hydrogen] Hydrogen Carriers

Ammonia's superior energy efficiency and existing port and shipping infrastructure could enable the deployment of large-scale transportation of ammonia as a hydrogen carrier.

	Compressed Hydrogen	Liquefied Hydrogen	Chemical Carrier	Ammonia (NH₃)
Density (kg/m³)	• 39	• 70.8	• 769	• 682 (1 bar)
Hydrogen content	• 100	• 100	• 6.16	• 17.8
Extraction Temperature	• N/A	• N/A	• 200-400	• 350-900
Energy Density (to H₂)	• x463	• x865	• x574	• x1,467
Required Infrastructure	• N/A	 Facility investment required 	 Compatible with existing oil & gas infrastructure 	 Compatible with existing propane infrastructure
Pros	+ Low CAPEX + Low conversion loss	+ Storage stability	 Compatibility Long-term storage 	 Compatible with propane infrastructure High energy density
Cons	 Safety and cost of transportation Low energy density 	 Safety and cost of transportation Cost of liquefaction 	 Cost and scalability Efficiency of chemical processes Conversion losses 	 Odour Toxicity Conversion losses

Major Types of Hydrogen Transportation Options

A Heat Map of Liquid Ammonia Carriers and Existing Ammonia Port Facilities

- ✓ The ammonia storage and transport infrastructures exist extensively across the globe to supply feedstock for inorganic fertilizers production
- ✓ As ammonia is compatible with propane infrastructure, retrofitting and repurposing of existing propane infrastructure present significant opportunity to expand the infrastructure networks as a hydrogen carrier

Sources: Hydrogen Council, Royal Society, broker reports, News run

Table of Contents

Global Carbon Emission Trend

Efforts to Achieve Net Zero and New Opportunities

- Carbon Capture, Utilization, Storage
- Ammonia/Hydrogen

Business Approach of DL E&C & CARBONCO

Project Cases Studies

- Case 1: Coal-Fired Power Plant "CCU" Project
- Case 2: Waste Energy Power Plant "CCU" Project
- Case 3: Desalination Plant CCU Project
- Case 4: Waste-to-Energy "CCU" Project

DL Group with CARBONCO

DL Group boasts a dazzling catalog of multiple landmark projects globally and domestically, including the world's largest ammonia production plant in Saudi Arabia.

DL Group Structure

DL Group Overview

- ✓ Founded in 1939, DL Group was the first domestic construction company in Korea and grew to become a diversified conglomerate with an extensive global presence in 40+ countries
- ✓ DL E&C is one of Asia's leading EPC contractor for companies in the petrochemical, power, energy, housing and civil works industries
 - DL E&C has completed >600 projects in 35 countries around the world with >49 years of experience in plant design and engineering

✓ CARBONCO was formed to address the growing need for decarbonization solutions

- Only Korean company able to provide full scope EPC services for commercial scale CCUS projects
- Oversaw the first carbon capture pilot plant project in Korea

There are significant strategic collaboration opportunities across the DL Group that could potentially accelerate the value creation and create significant synergies in CARBONCO's business ecosystem.

	Company Description	CCS/Carbon Products	Hydrogen/Ammonia
DAELIM	 Trading company specializing in petrochemical products, shipping and logistics services 	 Logistic service for captured CO₂ by leveraging off its cross-border shipping and an extensive global network 	 Off-taker of clean hydrogen, ammonia and fertilizer through long term agreement
DDL Chemical	 Petrochemical company producing basic chemicals and synthetic resins 	 Decarbonizing emitted CO₂ from chemical plants Production of CO₂ conversion chemical products 	 Distributor of clean hydrogen, ammonia and fertilizer to the market for energy source
DI ^{Energy}	 Energy company developing and operating a diverse power generation business, from gas combined cycle to renewable energy 	 Decarbonizing emitted CO₂ from power plants across the globe 	 Renewable energy provider for clean hydrogen/ammonia production Off-taker of produced clean hydrogen/ammonia
DI	 Construction company specializing in EPC services, primarily in Korea 	 Off-taker of produced recycled aggregates 	 Construction for ammonia hub terminal
DL_ ^{E&C}	 Construction company specializing in EPC services for housing, civil, and plant project across the globe 	 Off-taker of produced recycled aggregates EPC (Hub, Pipeline, Plant etc.) 	 EPC (hydrogen/ammonia/cracking plant, hub, pipeline, etc.) Small Modular Reactor (for pink/purple hydrogen)

DL Group's 20+ Years of Monumental Track Record

DL Group boasts a dazzling catalog of multiple landmark projects globally and domestically, including the world's largest ammonia production plant in Saudi Arabia.

Ecosystem of DL Group & CARBONCO (1/2)

CARBONCO will transition its legacy EPC-centric business model inherited from DL E&C to a developer business model, providing long-term services and supplying diversified products along the CCUS and hydrogen value chains.

DI & C/\RBONCO

Business Model of CARBONCO

Building on an impressive legacy of 20+ years EPC track record in carbon capture and ammonia facilities, CARBONCO strives with vigorous steps to become a leader in providing solutions and developing facilities across the CCUS and hydrogen/ammonia value chains. CARBONCO aims to position itself as a leader with pioneering ideas to achieve a global goal.

Decarbonization Technology Offerings of CARBONCO

CABONCO is a total CCUS solution provider based on wide range of proprietary decarbonization technologies and strong EPC capability.

	Services		vices CARBONCO Solutions		Description		Partners
	Plant Design Optimization		1 Standardisation		►	Standardized plant design library for carbon capture capacity up to 3,000tpd	
			 Modularization 	I	►	Customizable modular designs that minimizes design period and costs	
		ccs	3 Carbon Capture	e Solvent	•	High performance amine-based solvents for carbon capture developed by KEPCO	
ų		Carbon Products	Carbon Mineralization	CSA Cement	Þ	Replaces cement limestones with coal ash residuals with low carbon footprint	KICCAM Kenes Institute of Geoscience and Mineral Resources
EP	; Service			Green Aggregate	•	Recycles industrial waste into green aggregates, which can be used as mine fillers and construction materials	KICCAM Acres Institute of Geoscience and Mineral Resources
	Recurring	5 Hydrogen/ Ammonia 6	6 Blue Hydrogen	Production	•	Chemical looping water splitting ("CLWS") based hydrogen production technology developed by KEPCO	
			6 Ammonia	Production	•	Feasibility, FEED and EPC works for coal gasification-based urea/ammonia production facility in Australia	NeuRizer
				Cracking	Þ	Ammonia cracking process that yields high conversion rate (>99%) and low cost	

Carbon Mineralization

Carbon mineralization is currently the only scalable and economical viable solution to address intermediate demand for carbon storage and CARBONCO has secured two technologies capable of producing different carbon derivatives for construction applications.

IDI_ & C/\RBONCO

Blue Hydrogen Production

Process Overflow

Korean government announced national hydrogen economy roadmap, targeting 5.3Mtpa hydrogen production capacity by 2040. CARBONCO has partnered with KEPCO to co-develop CLWS-based blue hydrogen production technology to preemptively secure the market leadership.

Reactants Oil Coal Gas Steam (H₂O) Fossil Fuel (CH₄, CO/H₃) FeOx + H₂O Air Process Oxidizer Reducer Reactor Reactor Combustor Reactor FeOx + H₂O Fe₂O₃ CO, + H,O Blue H₂ End-use Fuel Cell Vehicles Power Generation Fuel Cell

CLWS Technology Comparison: KEPCO

	Companies	BABCOCK & WILCOX	RG🥠	
	Key Partners	ClearSkies		Kowepo Kex Hotelse Hetelse Komipo 한국중부발전
	System Configuration	Coal gasification & CLWS	SMR & CLWS	SMR & CLWS
	Reaction Stage	3 (Fuel-H2O-Air)	3 (Fuel-H2O-Air)	2 (Fuel-H2O-Air)
	O ₂ Transfer Capacity/Rate	4wt% / Fast	10wt% / Lower	≥14wt% / Faster
	Fuel	Coal/Syngas	NG/Syngas	NG/Syngas
	H2 Production Capacity	4kW (2018, + Heat 200kW)	60kW (2021)	20kW (2022)
I	Development Start	2007~ (Ohio State University)	2000~ (Graz University)	2020~

Details⁽¹⁾

DL & C/\RBONCO

✓ CLWS-based process produces high-purity blue hydrogen without separate carbon capture facility

Ammonia Cracking

Leveraging its experience as the leader in developing ammonia facilities by capacity, CARBONCO is developing the ammonia-hydrogen supply chain and its own proprietary ammonia cracking technology in collaboration with KEPCO.

Process Overflow

Specification CARBONCO Companies Government/Industry Design Large-capacity Small/medium capacity expandable design compact design Use of commercial catalyst Catalyst Use of laboratory catalyst /manufacturing methods Technology technology/facilities NH₃/H₂ combustion NH₃/NG combustion Heat Supply (carbon-free) (carbon emitted) NH, partial Product High-purity hydrogen reformed hydrogen Gas turbine of hydrogen co-Hydrogen charging station Applications fired/fired power generation (transportation, etc.)

✓ CARBONCO is co-developing an ammonia cracking process that yields high conversion rate >99%

470tpd

Ammonia Cracking Technology: KEPCO

2tpd

Demonstrate

d Scalability

Table of Contents

Global Carbon Emission Trend

Efforts to Achieve Net Zero and New Opportunities

- Carbon Capture, Utilization, Storage
- Ammonia/Hydrogen

Business Approach of DL E&C & CARBONCO

Project Cases Studies

- Case 1: Coal-Fired Power Plant "CCU" Project
- Case 2: Waste Energy Power Plant "CCU" Project
- Case 3: Desalination Plant CCU Project
- Case 4: Waste-to-Energy "CCU" Project

DI_ & CARBONCO

Case 1: Coal-Fired Power Plant "CCU" Project

CARBONCO proposes carbon capture and mineralization solution for coal-fired power plant. Coal-fired power stations emit over 10 billon tons of carbon dioxide each year, about one fifth of world greenhouse gas emissions. This makes these stations the single largest cause of climate change.

Project Overview

Coal-Fired Power Plant

 \checkmark The coal is fed into a power plant as fuel, and its flue gas is released to atmosphere.

 \checkmark Coal-fired power stations emits high concentration and volume of carbon dioxide.

CCU Plant

✓ Flue gas is pumped into a CCU plant and CO₂ is absorbed through capture process.
 ✓ Captured CO₂ is then transported to carbon mineralization plant.

Carbon Mineralization Plant

 ✓ Through carbonization process, the CO₂ is mineralized with the byproducts (ash) from CFPP as calcium carbonates. Besides calcium carbonates, rare earth elements like scandium, praseodymium, neodymium, etc. By-products can be separated.

Case 2: Waste Energy Power Plant "CCU" Project

CARBONCO offers tailor-made decarbonization solutions. CCUS technology is a ready-to-adopt technology that can be directly applied to existing various industries to reduce greenhouse gases and create added value simultaneously. CARBONCO presents consulting services to assist clients in finding customized decarbonization solutions.

Project Overview

Steel Mill

✓ The IEA estimates that direct CO₂ emissions due to crude steel production are approximately 1.4 tons of CO₂ per ton of steel produced.

1 ton

Waste Energy Recovery Co-Generation Plant, Off-gas power plant

1.4 ton

- ✓ DL E&C provided the consultation and the solution to one of Korea's major steel mills to develop a Waste Energy Recovery Co-generation plant (Off-gas power plant) to recycle energy 10 years ago.
- ✓ Waste Energy Recovery Co-generation plant runs on byproduct gases, which include gases produced by blast furnaces (BFG), Coke Oven Gas (COG), and Converter Gas (LDG) from Steel Mills.
- \checkmark The off-gas power plant emits high concentrations and volumes of $\rm CO_2.$

Carbon Capture Plant

- ✓ Flue gas from the off-gas power plant is pumped into a CCU plant and CO_2 is absorbed through the capture process.
- \checkmark Captured CO₂ is then sold to off-takers as Liquefied CO₂ or Dry Ice.

Process Overview

Case 3: Desalination Plant CCU Project

CARBONCO is a strategic partner with major players in the Middle East's Power Plants and Desalination plants, and they consistently attempt to incorporate CCU plants into their plants. The CO₂ produced by CCU plant can be steadily supplied to the post-treatment system of the desalination plant.

Project Overview

Power Plant

 \checkmark Power and steam are produced by a power plant.

 \checkmark NG is fed into a power plant as fuel, and its flue gas is released into the atmosphere.

CCU Plant

✓ Flue gas is fed into a CCU plant.

SWRO* Desalination Plant

 \checkmark Captured CO₂ is converted into the liquid phase (L-CO2) for transportation.

 \checkmark The CO₂ is pumped into a post-treatment of SWRO desalination plant. The CO₂ is utilized to mineralize the desalination water to meet drinking water regulation. *SWRO : Seawater Reverse Osmosis

IDI_ & CARBONCO

Case 4: Waste-to-Energy "CCU" Project

CARBONCO is elevating the circular economy with Waste-to-Energy (WTE) projects, diverting waste from landfills, reducing greenhouse gases from landfills, particularly methane (84 times more potent as a global warming gas than CO₂), offsetting emission from fossil fuel for electricity production and extracting profit from waste.

Project Overview

- ✓ In a landfill, waste is buried and bacteria break down the biogenic materials in the waste, generating methane and carbon dioxide.
- \checkmark Landfills emit less CO₂ than the waste incineration facility, however, methane emitted by landfills is far greater and methane is far more potent than CO_2 as it traps heat more efficiently.
- \checkmark Over a 100-year period, methane is 28-34 times as warming as CO₂ and 84 times more potent.

- ✓ Methane and CO₂ emission
- ✓ Fossil Fuel use for Incineration
- ✓ Unwanted Public Infrastructure (incl. landfill)

- ✓ Carbon capture and utilization
- ✓ Circular economy by recovering values from waste
- ✓ Steam & Power Production
- ✓ Clean and sustainable facility with profitable business

Process Overview

Rapidly growing as a leading group in the world, DL is developing pioneering solutions for decarbonization business to remarkably reduce GHG emissions

Contact us : www.carbonco.com / inquiry@carbonco.com

