Enabling Floating Solar Photovoltaic (FPV) Deployment:
FPV Technical Potential Assessment for Southeast Asia

Sika Gadzanku, Prateek Joshi, Evan Rosenlieb National Renewable Energy Laboratory (NREL)
2023 Asia Clean Energy Forum (ACEF)
June 2023
Motivation for Study

Association of Southeast Asian Nations (ASEAN)

2025 target: achieve a 35% share of renewable energy (RE) in installed power capacity

FPV is an option that can help countries leverage existing hydropower resources to meet:

- growing electricity demand
- energy security objectives
- renewable energy targets

This first-of-its-kind upper-bound estimate of FPV technical potential for SE Asia can help policymakers, planners, and decision makers better understand the role that FPV could play in meeting regional energy demand.

Source: ASEAN 2022
What is Floating Solar PV (FPV)?

Solar PV sited on waterbodies such as lakes, reservoirs, and water treatment ponds.

Some Co-Benefits of FPV:

- Reduced land use
- Increased panel efficiency
- Water conservation
- Reduced solar PV curtailment (when hybridized with hydropower)

Source: Gadzanku et al. 2021

Figure. Schematic of stand-alone FPV system

Source: Lee et al. 2020

Figure. Schematic of hybrid FPV-hydropower system

Source: Lee et al. 2020
Data Collection

Waterbodies

- Reservoirs (hydropower and non-hydropower)
- Natural Waterbodies (e.g., inland lakes, ponds, etc.)

Infrastructure

- Transmission lines, major roads, and protected areas

Solar Energy Resource

Figure. High-resolution solar resource data available for SE Asia

Source: Maclaurin et al. 2022
Analysis Scenarios

<table>
<thead>
<tr>
<th>Waterbody Type</th>
<th>FPV Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reservoir: hydropower</td>
<td>Fixed Tilt: monofacial</td>
</tr>
<tr>
<td>and non-hydropower</td>
<td></td>
</tr>
<tr>
<td>Natural: inland</td>
<td>Fixed Tilt: bifacial</td>
</tr>
<tr>
<td>Natural: offshore</td>
<td>1-axis Tracking: monofacial</td>
</tr>
<tr>
<td></td>
<td>1-axis Tracking: bifacial</td>
</tr>
</tbody>
</table>

| Included | Excluded |
Technical Potential Calculation

Exclusions
- Waterbodies in protected areas are excluded.
- Waterbodies further than 50km from the nearest major road are excluded.

Sensitivities
- Minimum distances from shore: 0 m, 50 m, and 100 m
- Maximum distances from shore: 500 m, 1000 m, and 2000 m

FPV Technical Potential:
- **Suitable Area (km²)**
- **Capacity (GW)**
- **Generation (TWh/yr)**

Technology Assumptions

Solar Resource Data

System Advisor Model

FPV Technical Potential Calculation

Advanced Energy Partnership for Asia

This information is accessible to ADB Management and staff. It may be shared outside ADB with appropriate permission.
Technical Potential: Reservoirs

Figure. FPV generation and capacity technical potential for reservoirs in SE Asia

Note: These results assume fixed-tilt monofacial FPV panels, with a 50 m minimum distance-from-shore and 1000 m maximum distance-from-shore buffer. The dataset excludes waterbodies that are more than 50 km from major roads and waterbodies that are within protected areas. These results do not reflect a filter for distance-from-transmission.

SE Asia Regional Results:

- **Waterbodies**: 88
- **Area**: ~1,343 – 2,784 km²
- **Capacity**: ~134 – 278 GW
- **Generation**: ~187 – 389 TWh/yr

Ranges in results are due to different distance-from-shore assumptions.
Technical Potential: Natural Waterbodies

SE Asia Regional Results:

Waterbodies: 7,213
Area: ~3,427 – 7,676 km²
Capacity: ~343 – 768 GW
Generation: ~476 – 1,062 TWh/yr

Ranges in results are due to different distance-from-shore assumptions.

Note: These results assume fixed-tilt monofacial FPV panels, with a 50 m minimum distance-from-shore and 1000 m maximum distance-from-shore buffer. The dataset excludes waterbodies that are more than 50 km from major roads and waterbodies that are within protected areas. These results do not reflect a filter for distance-from-transmission.
Key Takeaways

Role of FPV

- Reservoirs (hydropower and non-hydropower)
 - ~134 – 278 GW

- Natural Waterbodies (e.g., inland lakes, ponds, etc.)
 - ~343 – 768 GW

The installed capacity of renewables in ASEAN countries is expected to reach 235 GW by 2030 (81 GW of utility-scale solar) and 1,311 GW by 2050 (841 GW of utility-scale solar).

FPV can thus play a significant role in meeting SE Asia’s energy needs.

Data Limitations

For specific sites, detailed site-specific analysis will need to be conducted given the lack of bathymetry, wind, wave, and sediment data at a regional level.

Potential Future Research

- More detailed representation of bifacial FPV
- Offshore FPV technical potential
- Aquaculture + PV (“AquaPV”) technical potential

Figure. Food-Energy-Water nexus with role of FPV and AquaPV

Source: Joshi 2023

Source: IRENA and ASEAN Centre for Energy 2022

Thank you!

Sika.Gadzanku@nrel.gov