Sri Lanka

Power Sector Overview

Nalinda Illangakoon RWP RSP
Chairman
Ceylon Electricity Board
When written in Chinese the word

Crisis

is composed of two characters

First one represents

DANGER

And the other represents

Opportunity
Never Let good crisis go to waste

Winston Churchill
Sri Lanka is probably one of the best examples of converting a Crisis into an Opportunity.

Within Sri Lanka Power Sector is definitely the best example.
Transformation of the power sector

Pre-Crisis
- Loss making
- Public Funded
- Vertically Integrated
- Loosely Regulated
- Policy Incoherent
- Unionized

Post-Crisis
- Profitable
- PPP funded
- Unbundled
- Strong Regulations
- Policy instruments
- Inclusive decision making
Transformation of the power sector

- Renewable Development Plan
- Transmission Network Capacity Development
- Cost Reflective Tariff
- Sector Unbundling
- Investment Opportunities
- Wholesale energy market
- Open Access and power wheeling
- Regional Interconnection
Renewable Development Plan

2023

Renewable Energy
9,850 GWh
53.2%

Thermal Energy
8,650 GWh
46.8%

Total Energy
18,000 GWh

2024

Bio-Mass
Solar
Wind
Mini Hydro
Hydro
Gas Turbines
Oil based
Combine Cycle
Coal

2030

Renewable Energy
28,000 GWh

Thermal Energy
19,850 GWh
70.8%

Thermal Energy
8,150 GWh
46.8%

Bio-Mass
Solar
Wind
Mini Hydro
Hydro
IC Engines
Combine Cycle
Coal
Renewable Development Plan

World Bank Study on Off-shore wind
- 2GW – On-shore wind
- 27GW – Off-shore wind

SEA Study on Solar
- 8.5GW – Ground Mounted Solar
- 3GW – Floating Solar
- 3GW – Rooftop Solar

The Maximum Demand of the System at present = 2.7GW
Renewable Development Plan

<table>
<thead>
<tr>
<th>Type</th>
<th>Major</th>
<th>Mini</th>
<th>Biomass</th>
<th>Wind</th>
<th>Distribution</th>
<th>Grid</th>
<th>Total Solar</th>
<th>BESS at 4h</th>
<th>PSP (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hydro</td>
<td>Hydro</td>
<td>(MW)</td>
<td>(MW)</td>
<td>Network</td>
<td>Connecte</td>
<td>(MW)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(MW)</td>
<td>(MW)</td>
<td></td>
<td></td>
<td>Embedded</td>
<td>d Solar</td>
<td>(a)</td>
<td>(b)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Solar (MW)</td>
<td>(a+b)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2023 to 2026</td>
<td>188</td>
<td>90</td>
<td>80</td>
<td>575</td>
<td>555</td>
<td>1240</td>
<td>1795</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>2027</td>
<td>-</td>
<td>25</td>
<td>20</td>
<td>250</td>
<td>170</td>
<td>330</td>
<td>500</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>2028</td>
<td>-</td>
<td>25</td>
<td>20</td>
<td>200</td>
<td>170</td>
<td>350</td>
<td>520</td>
<td>350</td>
<td></td>
</tr>
<tr>
<td>2029</td>
<td>-</td>
<td>25</td>
<td>20</td>
<td>250</td>
<td>170</td>
<td>370</td>
<td>540</td>
<td>150</td>
<td>350</td>
</tr>
<tr>
<td>2030</td>
<td>-</td>
<td>10</td>
<td>20</td>
<td>200</td>
<td>170</td>
<td>280</td>
<td>450</td>
<td>125</td>
<td>350</td>
</tr>
<tr>
<td>Total</td>
<td>188</td>
<td>175</td>
<td>160</td>
<td>1475</td>
<td>1235</td>
<td>2570</td>
<td>3805</td>
<td>1125</td>
<td>700</td>
</tr>
</tbody>
</table>
Renewable Development Plan

<table>
<thead>
<tr>
<th>Zone</th>
<th>Solar (MW)</th>
<th>Wind (MW)</th>
<th>Total RE (MW)</th>
<th>BESS* (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern Zone</td>
<td>481</td>
<td>900</td>
<td>1,381</td>
<td>430</td>
</tr>
<tr>
<td>Mannar Zone</td>
<td>504</td>
<td>504</td>
<td>504</td>
<td></td>
</tr>
<tr>
<td>Eastern Zone</td>
<td>854</td>
<td>75</td>
<td>929</td>
<td>300</td>
</tr>
<tr>
<td>Southern Zone</td>
<td>674</td>
<td>674</td>
<td>674</td>
<td>300</td>
</tr>
<tr>
<td>Total</td>
<td>2,009</td>
<td>1,479</td>
<td>3,488</td>
<td>1,030</td>
</tr>
</tbody>
</table>
Renewable Development Plan

World Bank Study on Off-shore wind

- 2GW – On-shore wind
- 27GW – Off-shore wind
• Investment Opportunities

Estimated Investment requirement for Tentative RE Generation & Storage during the period 2023-2030 (MUSD)

<table>
<thead>
<tr>
<th>Generation Technology</th>
<th>2023</th>
<th>2024</th>
<th>2025</th>
<th>2026</th>
<th>2027</th>
<th>2028</th>
<th>2029</th>
<th>2030</th>
<th>Total (MUSD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mini Hydro</td>
<td>36</td>
<td>36</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>18</td>
<td>315</td>
</tr>
<tr>
<td>Wind</td>
<td>36</td>
<td>87</td>
<td>291</td>
<td>422</td>
<td>364</td>
<td>291</td>
<td>364</td>
<td>336</td>
<td>2,191</td>
</tr>
<tr>
<td>Solar PV</td>
<td>306</td>
<td>461</td>
<td>510</td>
<td>478</td>
<td>502</td>
<td>519</td>
<td>537</td>
<td>434</td>
<td>3,747</td>
</tr>
<tr>
<td>Biomass</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>35</td>
<td>280</td>
</tr>
<tr>
<td>Battery Energy Storage</td>
<td>-</td>
<td>30</td>
<td>147</td>
<td>265</td>
<td>295</td>
<td>515</td>
<td>221</td>
<td>184</td>
<td>1,657</td>
</tr>
<tr>
<td>Pump Storage Power Plant</td>
<td>-</td>
<td>16</td>
<td>62</td>
<td>167</td>
<td>275</td>
<td>294</td>
<td>248</td>
<td>142</td>
<td>1,204</td>
</tr>
<tr>
<td>Total</td>
<td>413</td>
<td>665</td>
<td>1,090</td>
<td>1,412</td>
<td>1,516</td>
<td>1,699</td>
<td>1,450</td>
<td>1,149</td>
<td>9,394</td>
</tr>
</tbody>
</table>

Transmission Investment requirement is USD 1.86B
Northern Grid Development
- Extension of 400kV Network to Killinochchi
- Extension of 220kV Network to Poonakary
- 1720MWh Grid Support Battery

Southern Grid Development
- Enhancement of Hambanthota GSS
- 1200MWh Grid Support Battery
- Extension of 220kV to Monaragala

Central Backbone
- Habarana-Wicktoria-Kirindiwela 400kV transmission Line

System Control Centre Enhancements
- Renewable Energy Prediction desk
- Western Grid resilience through fast acting supplementary generation
- 800MWh Grid Support Battery

Eastern Grid Development
- Extension of 220kV Grid to Kappalthurai
- 1200MWh Grid Support Battery

India-Sri Lanka Interconnection

Transmission Network Capacity Development
• Transmission Network Capacity Development

- 400kV/220kV Northern Feeder and Collector System
- 400kV Central Feeder and Collector System
- 220kV Eastern Feeder and Collector System
- 220kV Southern Feeder and Collector System
Cost Reflective Tariff

- **Regulated Tariff**
 - Revision period of 3 months
 - Tariff calculation period of 1 year
 - Tariff window of 5 years
 - Regulated by PUCSL
 - Statutory binding to provide all approved costs of the utility

- **Operationalization of tariff variation**
 - Automatic adjustment of the tariff within the tariff period
 - Cost Reflectivity is ensured
 - Triggered by the cash flow to the Bulk Supply Transaction Account
• Sector Unbundling
Surplus renewable resources shall be developed for export purposes

- The India-Sri Lanka interconnection is a mission-critical infrastructure
- The Renewable resource development needs to be attended to with the view of the 90% export rather than 10% local consumption
Thank You