

ASIA CLEAN ENERGY FORUM 2024

Deep Dive Workshop:

Electrifying Cooking – Innovative Approaches and
Business Models for Asia and the Pacific

5 JUNE 2024

Modern eCooking; leveraging a decade of Asian electricity access gains, including mini-grids and offgrid generation and recent developments on accessing carbon finance for eCooking

S Batchelor

All images used under Fair Use Act, and sources referenced in slide 23. This material is based on UK Funding but the views expressed do not necessarily reflect the UK government's official policies.

Integrated Planning of modern energy inclusive of cooking

Culture, modern habits, taste and cost

CLOSING THE GAP ON CLEAN COOKING

Strates of Bester and Strates Bestering

eCOOKBOOK w

WHAT IS THE CHEAPEST WAY TO COOK HEAVY FOODS?

We wonted to know if anything could beat on **Electric Pressure Cooker** (EPC) on cost, so we boiled 500g of yellow bears as carefully as we could no charmad, largeriese, (PG, on electric hotplace and an EPC. We did a side by side 8 just precooked them so that we could directly compare between them.

We used all the tricks in the book – lids on the sufarias, turning down to a simmer, just enough water, etc. However, we still couldn't get alose to an EPC.

Not only was it seven times cheaper than charcoal, but it cooked in half the time without any stirring or topping up of water or fuel!

TYPICAL COSTS OF COOKING

BEST PERFORMER

Table 8 Energy consumption relative to hotplate (based on median values)

Device	Energy used expressed as proportion of energy used by Hotplate (%)
Modern hobs	
Induction	83%
Infrared	92%
Insulated and automated devices	
Rice cooker	77%
Frying pan	83%
Curry cooker	75%
Pressurised device	е
EPC	48%

Energy Efficiency

Global electric Cooking Coalition (GeCCo) Niche to Norm

Engagement Group Members to date

GET.invest

clasp

SOCIAL FINANCE

ukaid

The challenge of integrated planning

- Local transformers and household connections
- Proportion of Renewable Generation
- Not waiting until 99% access
- Leveraging investment

Figure 3. Voltage Profiles within LV network after introduction of 1kW EPCs.

The challenge of integrated planning 2

Investment required to realise clean cooking opportunity in Nigeria in 20301, USD Mn

Figure 4.3: Cashflow analysis and payback period for Project 1 (a) without eCooking (b) with eCooking. Developer 1, 2023 [1].

Figure 4.2: Average normalised daily load profiles of mini-grids in Project 1 context. Developer 1, 2023 [1].

Hour of the Day [24h]

Image credit left: Kachione LLC Right.: An eWant 5L electric pressure cooker (EPC) connected to two 280W solar panels connected in parallel such that the current is doubled for the same voltage

Indian Oil Corporation thermal storage solar cooker (left) (<u>link</u>) & Calpoly: Insulated Solar Electric Cooker (ISEC) with phase change materials (right) (<u>link</u>)

Carbon Finance

Carbon finance – Voluntary Carbon Market

Issuances MtCO₃e cumulative

Modern Energy Cooking Services

Carbon Finance - 2024 a turbulent year for cooking

undermining climate action and long-term SDG financing. Here we conduct a comprehensive, quantitative, quality assessment of offsets by comparing five cookstove methodologies with published literature and our own analysis. We find misalignment, in order of importance, with fraction of non-renewable biomass, firewood—charcoal conversion, stove adoption, stove usage, fuel consumption, stacking (using multiple stoves), rebound and emission factors. Additionality, leakage, permanence and overlapping claims require more research. We estimate that our project sample is over-credited 9.2 times. Gold Standard's metered methodology, which directly monitors fuel use, is most aligned with our estimates (1.5 times over-credited) and has the largest potential for emission abatement and health benefit. We provide recommendations to align methodologies with current science and SDG progress.

Pervasive over-crediting from cookstove offset methodologies

<u>Annelise Gill-Wiehl</u> [™], <u>Daniel M. Kammen</u> & <u>Barbara K. Haya</u>

Nature Sustainability 7, 191–202 (2024) Cite this article

Carbon finance – Over-crediting due to high fNRB?

Figure 3. Average national fNRB as reported by projects from 24 projects rated by BeZero Carbon. Number of projects per country is listed within the column labels.

Carbon finance – Its expensive to register.

Figure 2. Project Cycle (image credit: Nexus for Development, 2023).

Carbon finance – Its expensive to register.

US\$ 5,000 - 10,000

Cost: US\$ 50,000 - 75,000 (upfront)

~6 months

Cost: US\$ 10,000 - 20,000 (upfront)

Time: 3-6 months

Cost:

~3 months

Responsibility:

Responsibility:

Cost:

US\$ 3,000 - 5,000 (upfront)

Time: ~2 months

Time:

US\$ 30,000 - 50,000 (recurring)

Time:

~6 months

Varies depending on issuance Cost: volume

~1 month Time:

VERIFICATION

Multiple End Users and Monitored Devices

Carbon finance – Live tracking

Patented IoT-enabled induction cookstoves

Remote control and data recuperation

Hardware | Software | Data

Accessors and accessors

Enables faster scale and locks-in

GPS & IoT Tamper warnings

Auto-device lock

device usage

means devices are trackable and ensure data is verifiable

Live tracking of usage data

Push notifications of new features & products

Precise and reliable tracking of consumption of each customer

Third-party PayGo integration

Payment and mobile money infrastructure in place

Carbon credit issuance

Automated Digital certification of usage data with Gold Standard

Gold Standard

Carbon finance – Cook to earn.

ADB

Carbon finance – New platforms.

Carbon finance – Article 6 – formalising the flows.

Nationally Determined Contribution Carbon
Offsetting and
Reduction
Scheme for
International
Aviation
(CORSIA)

Claim or adjustment

Outcomes (ITMO)

Volunatary Committments

Domestic schemes

Results Based Financing

ASIA CLEAN ENERGY FORUM 2024

Deep Dive Workshop:

Electrifying Cooking – Innovative Approaches and
Business Models for Asia and the Pacific

5 JUNE 2024

Modern eCooking; leveraging a decade of Asian electricity access gains, including mini-grids and offgrid generation and recent developments on accessing carbon finance for eCooking

S Batchelor

References

Slide 3 https://mecs.org.uk/ecookbooks/

Slide 4 https://mecs.org.uk/wp-content/uploads/2022/03/India-eCookbook-21-compressed.pdf

Slide 5 https://mecs.org.uk/wp-content/uploads/2023/03/Comparing-energy-consumption-and-costs-from-cooking-across-the-MECS-programme.pdf

Slide 6 www.gecko.org & https://www.irena.org/Publications/2023/Dec/Renewables-based-electric-cooking-Climate-commitments-and-finance

Slide 7 https://mecs.org.uk/blog/impact-of-new-electric-cooking-appliances-on-low-voltage-distribution-networks-and-off-grid-solar-microgrids/

Slide 8 https://www.seforall.org/system/files/2022-01/Nigeria IEPT-Clean Cooking Report.pdf

Slide 9 https://mecs.org.uk/wp-content/uploads/2024/04/Cooking-Support-on-Mini-Grids-COSMO-Phase-1-Synthesis-Report.pdf

Slide 10 https://economictimes.indiatimes.com/industry/renewables/indian-oil-unveils-indoor-solar-cooking-

 $\underline{stove-surya-nutan/articleshow/92392858.cms} \ \& \ \underline{https://mecs.org.uk/blog/a-global-learning-community-insulated-solar-electric-cooker-isec/learning-cooker-isec/learning-c$

Slide 12 https://mecs.org.uk/resources/carbon-financing-for-clean-cooking-projects/2-crediting-standards-and-mechanisms/ https://mecs.org.uk/resources/carbon-financing-for-clean-cooking-projects/2-crediting-standards-and-mechanisms/ https://mecs.org.uk/wp-

content/uploads/2023/05/The-Role-of-Voluntary-Carbon-Markets-in-Clean-Cooking.pdf

Slide 13 https://gspp.berkeley.edu/research-and-impact/centers/cepp/projects/berkeley-carbon-trading-project/cookstoves

Slide 14 https://bezerocarbon.com/insights/why-fnrb-is-critical-in-our-assessment-of-household-devices-projects

Slide 15 https://mecs.org.uk/resources/carbon-financing-for-clean-cooking-projects/3-clean-cooking-carbon-project-development/

Slide 16 https://mecs.org.uk/wp-content/uploads/2023/05/FINAL-Business-Model-Briefing.pdf

Slide 17 https://mecs.org.uk/blog/the-importance-of-metered-methodologies-for-carbon-credit-certification-of-modern-energy-cooking-projects/

Slide 18 https://mecs.org.uk/blog/atec-mecs-to-pilot-digitised-cook-to-earn/

Slide 19 https://mecs.org.uk/blog/atec-mecs-to-pilot-digitised-cook-to-earn/

Slide 20 https://www.cavex.io/

Slide 21 Based on https://www.ecosystemmarketplace.com/articles/what-does-the-article-6-rulebook-mean-for-redd/

