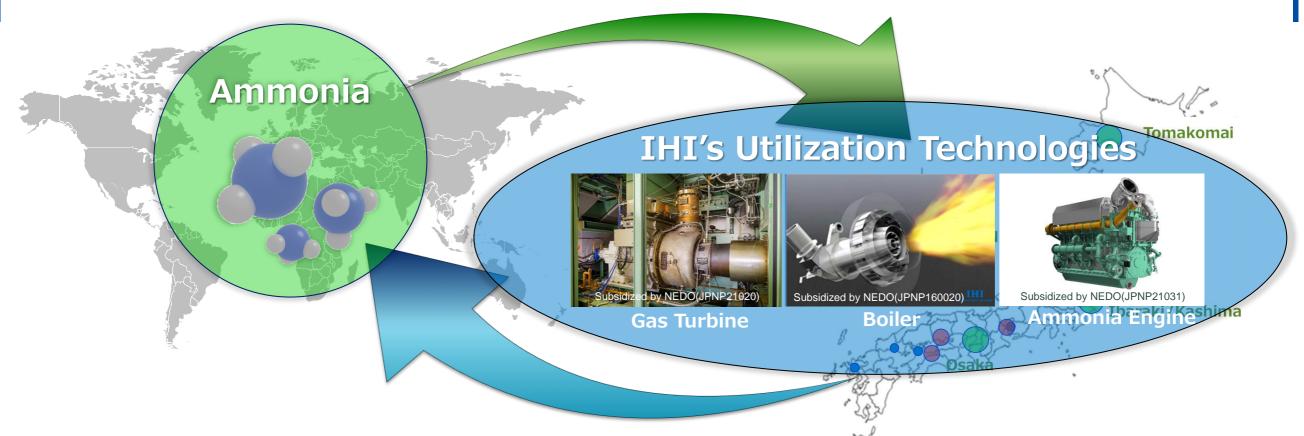


Creating a clean ammonia society

IHI


6th June 2025

Mio OKAZAKI IHI POWER SYSTEM (M) SDN BHD (100% Subsidiary Company of IHI Corporation)

Copyright © IHI Corporation All Rights Reserved.

IHI's Utilization Technologies to create clean ammonia society

In 2024, a series of world's first implementation demos under three important initiatives were conducted in Japan to verify the **reduced environmental impact**, **safe usage**, and **operational reliability** of **fuel ammonia** in a variety of applications.

IHI have been developing utilization technologies since the beginning of the 2010s, and have achieved excellent results whilst conducting multiple breakthrough demonstrations.

Fuel Ammonia Substitution Demonstration

Ammonia

nozzle

This effort has yielded favorable environmental outcomes

- CO₂ emissions reduced by 20% (=in step with the ammonia substitution ratio)
- SO₂ emissions reduced by 20% (=in step with the ammonia substitution ratio)
- NO_x emissions equal to or lower than those prior to ammonia substitution
- N₂O emissions below detection limit

Table: Detailed Combustion Characteristics

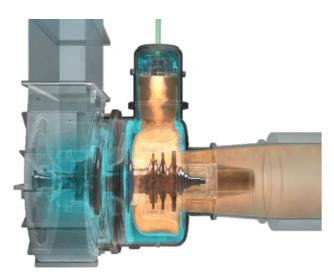
ltem	Unit	Single firing of conventional fuel	Ammonia 20% Firing	Comparison: Ammonia 20% Firing /Conventional fuel
NO _x	ppm [Dry, 6%O ₂ basis]	134	106	⊿20%
SOx	ppm [Wet]	502	397	⊿20%
Unburned matters in ash	%	1.6	1.8	No significant changes
CO ₂	% [Dry, 6%O ₂ basis]	13.4	10.8	⊿20%
N ₂ O	ppm	Equal to or less than the lower limit of quantification		
Unburned NH ₃	ppm			

Two awards received in April 2025:

The 2024 Technology Award from *The Combustion Society of Japan* (for IHI)

The JSME Award (Technology) from *The Japan Society of Mechanical Engineers* (for IHI & JERA)

Ammonia-Fueled Tugboat "Sakigake"



The world's first commercial-use ammonia-fueled vessel, Sakigake, has successfully completed a three-month demonstration voyage, during which the vessel engaged in tugboat operations in Tokyo Bay and achieved a GHG-emission reduction of up to approximately 95%, as part of a Green Innovation Fund Project under Japan's New Energy and Industrial Technology Development Organization (NEDO). (March, 2025)

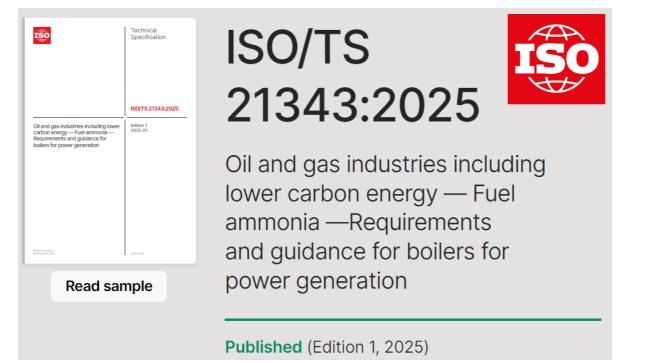
Developing a fully ammonia-powered 2MW-class gas turbine. Built an ammonia gas turbine test facility in Yokohama Works, Japan. Achieved full load operation with 100% liquid ammonia combustion in 2022. 99+% Reduction of Green House Gas (CO₂ & N₂O) from natural gas operation. Regulatory compliant NOx emission level with conventional NOx after treatment systems.

IHI IM270 gas turbine

Ammonia GT test facility & Fuel Supply System at IHI Yokohama

2,000kW-class gas turbine "IHI IM270"

The long-term durability test using 100% ammonia fuel has been ongoing at IHI Aioi Works, in Hyogo, Japan, since July 2024.


The decarbonization value generated through the use of clean ammonia is provided to **the 2025** Osaka-Kansai Expo, contributing towards the realization of a carbon-neutral event.

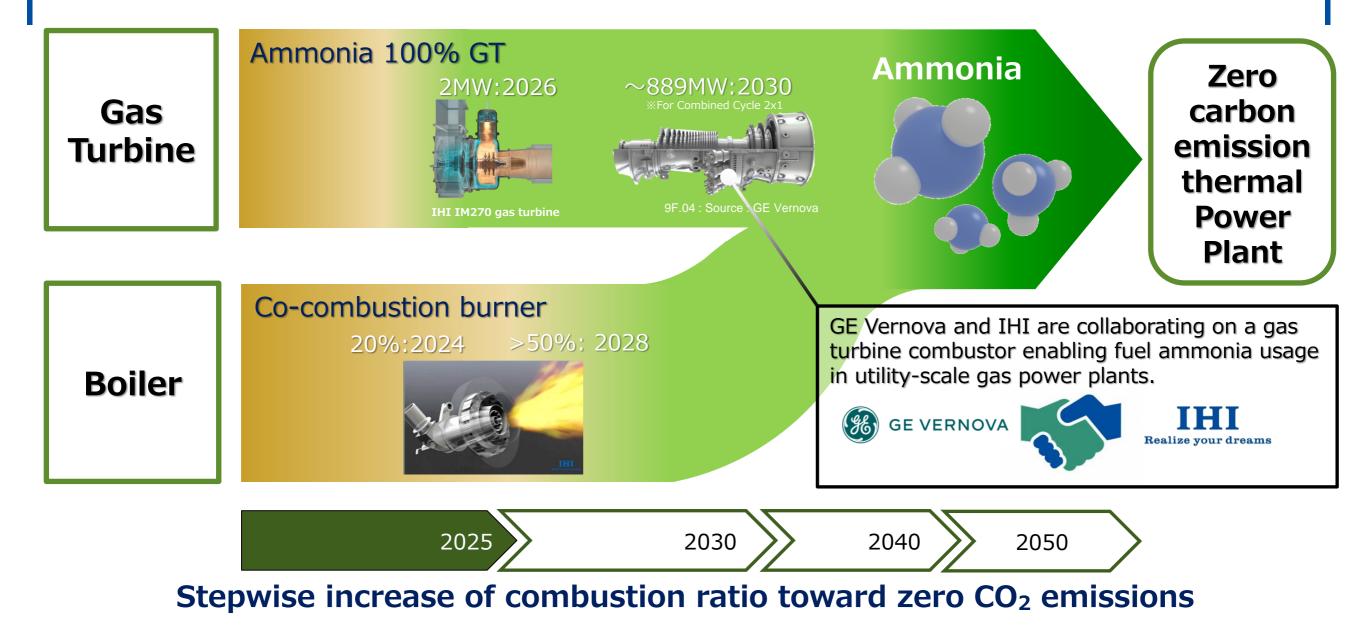
Copyright © IHI Corporation All Rights Reserved.

International standardization for global ammonia utilization

International Standardization Activities for Fuel Ammonia - Requirements and guidance for boilers for power generation: **Technical Specification (ISO/TS 21343)** was issued on January 14, 2025.

- **IHI** (Project Leader/Chair)
- Tohoku University (Co-Chair)
- Clean Fuel Ammonia Association
- Mitsubishi Heavy Industries

Participating Expert (Country)


ISO/TS 21343:2025 - Oil and gas industries including lower carbon energy — Fuel ammonia — Requirements and guidance for boilers for power generation

Next Action: Reflecting the results of the Hekinan, switch from TS to IS.

(Remarks : TS (Technical Standard / IS (International Standard)

IHI's Decarbonization Roadmap in Power Sector

IHI's Decarbonization Roadmap in Maritime Sector

NYK, Japan Engine Corporation, **IHI/IPS**, and **NIHON SHIPYARD CO., Ltd.** are working together to develop **an ammonia-fueled ammonia gas carrier (AFMGC)**, which is scheduled to be delivered in **November 2026**, also as part of **NEDO**'s Green Innovation Fund Project; "Development of vessels equipped with domestically produced ammonia-fueled engines".

NEDO will promote research and development of next-generation fuel vessels, including ammonia-fueled vessels, and will work towards achieving carbon neutrality in the shipping industry.

