

ASIA CLEAN ENERGY FORUM 2025

Empowering the Future: Clean Energy Innovations, Regional Cooperation and Integration, and Financing Solutions

2–6 June | ADB Headquarters

ASIA CLEAN ENERGY FORUM 2025

Empowering the Future: Clean Energy Innovations, Regional Cooperation and Integration, and Financing Solutions 2-6 June | ADB Headquarters, Manila

Untapped Alternatives - Other Marine Renewable Energy (e.g. Tidal In-Stream Energy and more) 06 June 2025 | 9–10:30 a.m. (GMT+8)

Dr. Michael Lochinvar Sim Abundo

ADB Energy Emerging Areas Consultant

CEO, OceanPixel Pte Ltd

<u>mabundo.consultant@adb.org</u> | <u>mike@oceanpixel.org</u> | +65 9066 3584 (Mobile / WhatsApp)

Marine Renewable Energy (MRE)

"MRE = Renewable energy production which makes use of marine resources or marine space."*

• Offshore Wind

• Marine Solar

Marine biomass
 (micro- and macro-algae)

Ocean Renewable Energy (ORE) – subset of MRE

• Currents (Ocean Current, Tidal Currents/In-Stream)

• Thermal Gradient (via OTEC**)

Waves

Salinity / Osmotic Gradient

Tides (Tidal Range)

Waves

Tidal In-Stream Energy Converters (TISEC)

Tides or Tidal Range (Barrage)

Status of Marine Renewable Energy (MRE) Technology

https://www.energytransitionpartnership.org/wp-content/uploads/2024/04/Marine-Renewable-Energy-in-the-Philip

pines-Sustainable-Energy-from-Ocean-Spaces-and-Resources-2022.pdf

Ocean Energy Technologies: Commercialization, Levelized Cost of Energy

Ocean Energy Forum. (2016). Ocean Energy Strategic Roadmap 2016, building ocean energy for Europe. Maritime Forum. European Commission.

Target Cost Reduction Curve and Recent Wave & Tidal LCOE

IRENA. (2020). Innovation outlook: Ocean energy technologies. International Renewable Energy Agency.

Philippines Marine Renewable Energy (MRE) Resource Potential

ADB

Progressive Development Pathway for Tidal Energy and Other Emerging MRE

ADB

Harness Untapped Energy Resources – Marine Solar + Tidal Energy + ^mHýbrid Marine Renewable Energy System

Harnessing Energy from Tidal Currents and Solar (on land and at sea)

ADB

Example for 10kW* Load – Some Technology Options

Marine Floating Solar

- Resource Availability:
 ~ 17% of the time
- Size: ~20 kWp
- Surface Space:

~140 sqm

- Costs**:
- Project Dev't + CapEx ~S\$150k to S\$200k
- Annual OpEx
 ~S\$10k to S\$20k

Tidal Current Turbine/s

- Resource Availability: ~30% to 40% of the time (in a month)
- Size: ~ 40 to 100 kWp
- Surface Space:
 ~35 to 70 sqm
- Costs**:
- Project Dev't + CapEx ~S\$200k to S\$350k
- Annual OpEx
 ~S\$10k to S\$25k

Hybrid Floating Solar + Tidal

- Size (Solar): ~10 kW
- Size (Tidal): ~20 to 60 kWp
- Surface Space:
 ~70 sqm
- Costs**:
- Project Dev't + CapEx ~S\$175k to S\$300k
- Annual OpEx ~S\$10k to S\$20k

*Electrical Load: 10kW Power with 8 hours per day operation, assumed daily load energy requirement = 80kWh/d ** May include a feasibly-sized energy storage system (e.g. battery)

Case Study: Hybrid System for Island Micro-Grid

The project approach combines appropriate technology with local content and know-how.

The tidal turbine is suspended below a floating barge in a simple and robust arrangement which allows for straightforward inspection and maintenance and can be easily replicated.

The project has proven the capability of a multi-company team to develop, implement and successfully deploy a tidal turbine in one of the most remote and areas of Indonesia.

The installation of Schottel Hydro's 50kW turbine in West Papua is a significant step on the journey to use marine renewables to de-carbonise energy supplies across the region.

Case Study: Hybrid System for Island Micro-Grids

ADB

Power System Config.	RE Fraction	Excess Electricity	LCOE (USD/kWh)
Diesel GenSets (910, 100 kVA) + Batt (576kWh) + Solar (300kWp) + Tidal (200kWp)	31.6%	12.6%	0.368
Diesel GenSets (910kVA, 100 kVA) + Batt (720kWh) + Solar (600kWp)	38.6%	20.1%	0.386
Diesel GenSets (910kVA, 100 kVA)+Batt.(1440kWh)	0.0 %	2.47%	0.456
Diesel GenSets (2x 910, 500, 100 kVA)	0.0 %	14.5%	0.50

Example:

Reference Rates and Costs of Tidal In-Stream Energy Projects

fluid.energy.intelligence

Project/s Size and Location	Technology	Feed-in Tariff (FIT) / Power Purchase Agreement (PPA) Rate or LCOE and term	Notes/Remarks
22MW, Canada [2]	Tidal In-Stream	 a. FIT: CAD530/MWh (~PhP19.63/kWh), 15 years b. FIT: CAD420/MWh (~PhP15.56/kWh), 15 years 	FIT rates are developmental rates called "COMFIT" or Community FIT. Lower rate for projects producing >16,640 MWh
9MW, Canada [3]	Tidal In-Stream	CAD530/MWh (~PhP19.63/kWh), 15 years	Project Cost: ~PhP4.34B
~1-2MW, Indonesia (West Papua) [1]	Hybrid Tidal In-Stream, Solar, Diesel	Diesel-only LCOE: USD0.5 to USD 1 / kWh (~PhP24.06 to PhP48.12/kWh) Hybrid (Tidal+Solar+Battery+Diesel) Case Study LCOE: USD 0.25 to USD 0.368 /kWh (~PhP12.03 to PhP 17.71/kWh), 20 years	Phase 1 (Test): Tidal + Diesel – completed in 2017
600kW to 5MW, Philippines	Hybrid Tidal In-Stream, Solar, Diesel	Diesel-Only True Cost of Generation Rate: ~PhP 13.5 to 24.83/kWh Hybrid (Tidal+Solar+Battery+Diesel) LCOE: (~PhP12.03 to PhP 17.71/kWh), 20 years	Various Off-Grid Studies – i.e. Tawi-Tawi, Dinagat, San Antonio (N. Samar) <u>Estimated/Indicative Project Costs:</u> PhP75m-100m (600kW, no OpEx) PhP125m-150m (1.2MW, no Opex) ~PhP500m (5MW, no Opex)

Potential Pilot Projects (Cross-Sector Integrated Solutions)

Ocean/Marine Renewable Energy: Marine Solar, Offshore Wind, Tidal In-Stream, Wave

Systems and Eco-Systems' Integration

Transportation

lce

Aquaculture Fish pen offshore Mussel farming

ADB

Testbedding Other Innovations Technologies Business Models "Learn by Doing"

Ports/Marinas/Bays

Water Production

MRE Device

Reef Restoration, Marine Area Monitoring

Harness Untapped Energy Resources – Marine Solar + Tidal Energy +

ADB

Summary, Conclusions, & Recommendations

- Marine Renewable Energy Options Exist (Huge, yet to be tapped Potential)
 - Offshore Wind, Marine Solar, (Commercial), and Tidal Currents (Pre-Commercial)
 - Other Emerging Marine RE: Waves, OTEC, Salinity Gradient, Marine Biomass
 - Need for a Resource Inventory Review and Suitability Studies for Pilot Projects
- Identified Key Needs / Next Steps
 - Resource Inventory
 - MRE Development Roadmapping
 - Tools, e.g. Marine Spatial Planning
 - Market Mechanisms
 - Feed-In Tariff Rate Setting
 - Access to Subsidies for True Cost of Generation (e.g. from (UCME))
 - Enabling / Opening Up Access to Funding and Financing
 - Enhancing Research, Development, and Demonstration
 - For Early Stage Projects and Other Stages
- Support Needed from Partners and the wider Stakeholders

- Greening" the Marine and Maritime Ecosystem/s
 - Sustainable Integrated Development for Islands and Coasts
- Progressive Development Approach Towards a Blue Economy
 - Capability Development Local Supply Chain (especially Services)
 - Hybrid Systems and Co-Application will be key to success

ASIA CLEAN ENERGY FORUM 2025

Empowering the Future: Clean Energy Innovations, Regional Cooperation and Integration, and Financing Solutions 2-6 June | ADB Headquarters, Manila

Untapped Alternatives - Other Marine Renewable Energy (e.g. Tidal In-Stream Energy and more) 06 June 2025 | 9–10:30 a.m. (GMT+8)

Dr. Michael Lochinvar Sim Abundo

ADB Energy Emerging Areas Consultant

CEO, OceanPixel Pte Ltd

<u>mabundo.consultant@adb.org</u> | <u>mike@oceanpixel.org</u> | +65 9066 3584 (Mobile / WhatsApp)