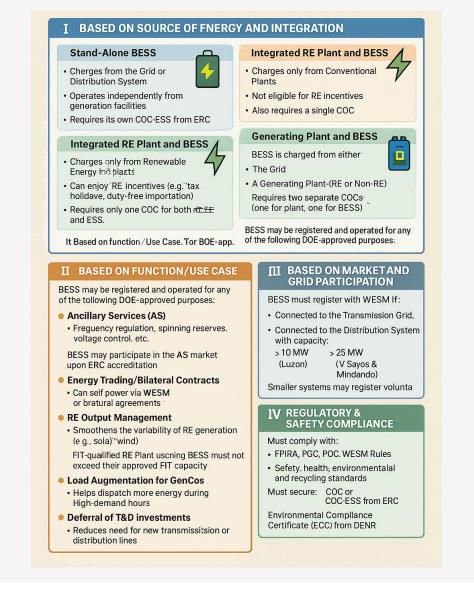


Variable Renewable Energy and BESS: The Case of the Philippines

ACEF 2025 Deep Dive Workshop Energy Storage – Accelerating Clean Energy Transition in Asia – The Role of BESS and ENABLE Platform

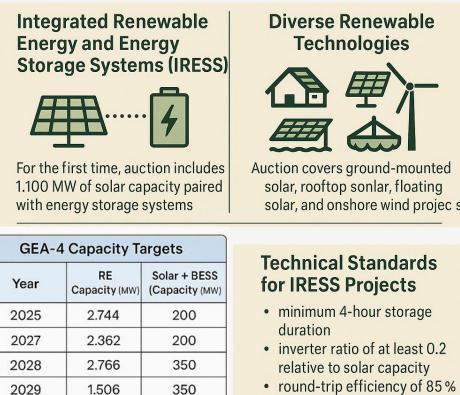
6 June 2025, 11:00-12:30 pm. Asian Development Bank


Dr Romeo Pacudan Technical Director, Sustainable Energy Systems RICARDO PLC

1. Philippine ESS Policies

Evolution of ESS Policies

- 1) DOE DC2019-08-0012. Providing a Framework for Energy Storage System in the Electric Power Industry. Laid the groundwork, acknowledging ESS as an emerging solution for energy reliability and flexibility.
- 2) DOE DC2023-04-0008. Prescribing the Policy for Energy Storage System in the Electric Power Industry. Marked a mature policy shift, formally integrating ESS into market rules and grid operations through technical classification and operational restrictions.
- Statistics (DOE)
 - 436 MW (2023)
 - Most of these projects are operated to provide Ancillary Services


ESS Classification under DC-2023-04-0008



6. Green Energy Auction – Round 4

The Philippines' Department of Energy (DOE) has launched the fourth round of its Green Energy Auction (GEA-4), aiming to add 9,378 megawatts (MW) of renewable energy capacity between 2026 and 2029. This round introduces the integration of solar power plants with Battery Energy Storage Systems (BESS), marking a first in the nation's renewable energy program

1.100

Auction covers ground-mounted solar, rooftop sonlar, floating solar, and onshore wind projec s

20-Year Supply Contracts

Winning bidders to secure 20-year contracts, payments to commence upon commercial operation

Performance Bonds

Developers required to post 5% of project's capex, down from 20% in earlier rounds

Strategic Implications of IRESS in GEA-4

- Drives Investment in dispatchable renewables
- Boosts interest from (PPs: foreign investors. a BESS providers
- Helps DOE optimize RE output for grid reliability. not just peak solar generation
- Encourages BESS cost innovation through competitive bidding

TECHNOLOGY	PRELIMINARY GEAR PRICE (₽/kWh)		
Rooftop Solar	₽4.7679		
Ground-Mounted Solar	₽4.1480		
Floating Solar	₽5.9515		
Onshore Wind	₽6.5134		
Solar with Battery Energy Storage	₽5.2835		

Total

9.378

2. Technical Challenges of VRE Expansion

1) Grid Congestion and Limited Grid Capacity

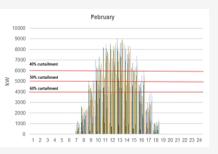
- *Challenge*: Many VRE potential areas are located far from demand centers.
- Impact: Grid congestion leads to curtailment of VRE output or delays in interconnection

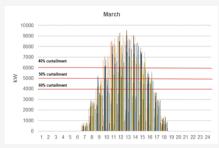
2) Intermittency and Lack of Grid Flexibility

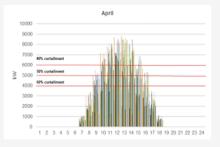
- *Challenge*: Solar PV output is variable, and the current Philippine grid lacks the flexibility to integrate high shares of intermittent energy.
- Impact: Without energy storage or flexible generation, solar penetration is capped to maintain system stability.

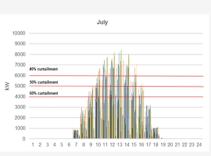
3. Key Drivers of VRE Curtailment

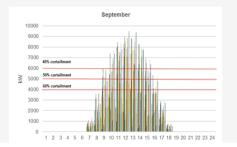
- GEA Projects. Some Green Energy Auction (GEA) solar projects are facing output caps due to lack of timely grid upgrades.
- **DU Interconnection Caps.** Distribution utilities limit solar injection to avoid reverse power flow or transformer overload.
- Visayas & Mindanao Bottlenecks. Solar growth is concentrated in regions with weak or saturated transmission infrastructure.
- WESM Dispatch Rules. Solar plants without preferential dispatch can be cut back during overgeneration scenarios.

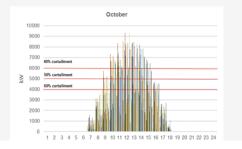

- Technical Curtailment
 - Occurs in regions like Visayas where substations are saturated.
- Contractual Curtailment
 - Some GEA-awarded projects face caps in their offtake agreements.
- Economic Curtailment
 - Emerging as WESM allows real-time market signals that may deprioritise solar.
- Regulatory Curtailment
 - Utilities may curtail VRE during grid emergencies for system security.

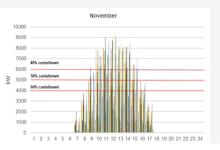


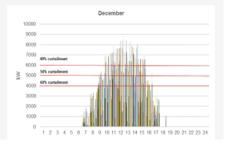

4. Discussion Paper commissioned by ETP-UNOPS Solar PV Generation Variability

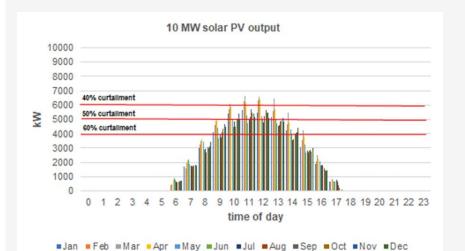




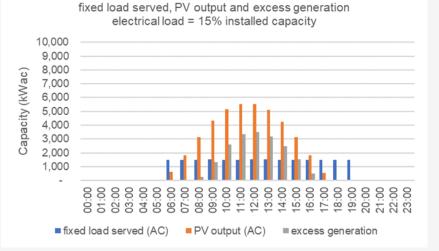


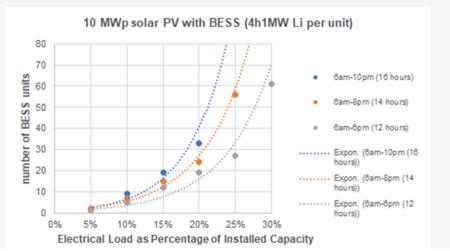


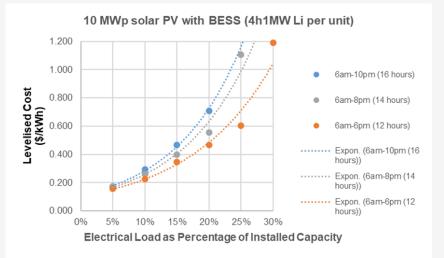


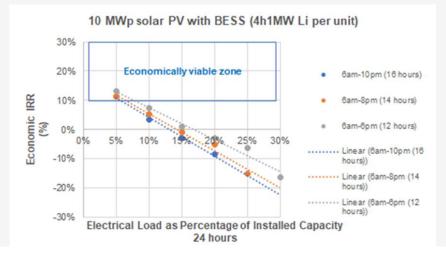


5. Discussion Paper commissioned by ETP-UNOPS Curtailment and BESS Sizing




	Curtailment		
	60%	50%	40%
BESS units (1 cycle per day)	number of units 2.0 1.0 1 5.0 3.0 2		
4h 1 MW	2.0	1.0	1.0
2h 1 MW	5.0	3.0	2.0
1h 1 MW	9.0	6.0	3.0
	Curtailment		
	60%	50%	40%
System Levelised Cost (10 MW solar PV + BESS)	US\$/kWh		
4h 1 MW	0.149	0.133	0.133
2h 1 MW	0.165	0.146	0.136
1h 1 MW	0.175	0.156	0.136
	PhP/kWh @PhP55/US\$		US\$
4h 1 MW	8.20	7.31	7.31
2h 1 MW	9.08	8.02	7.49
1h 1 MW	9.62	8.56	7.49


Higher curtailment levels and smaller capacity BESS units have higher levelised cost of electricity.



5. Discussion Paper commissioned by ETP-UNOPS Dispatchable Capacity

7. Highlights

1. Policy Evolution

• The DOE has transitioned from general ESS recognition in 2019 to a formal, functional classification system in 2023, enabling structured integration into the grid and markets.

2. Curtailment Trends

• VRE are increasingly curtailed due to grid congestion, limited interconnection, and market dispatch rules—especially in high-VRE regions.

3. BESS as Enabler

• Battery energy storage is essential for reducing curtailment, firming renewable output, and supporting grid stability through ancillary services.

4. Cost Effective Design

• Under high curtailment conditions, optimal inverter ratios and storage durations are crucial to keeping levelized costs manageable.

5. GEA Round 4

- GEA 4 is a landmark step, mandating the integration of storage (IRESS) with solar, with clear targets for the period 2026-2029.
- Mandates minimum 4-hour duration and RE-only charging, ensuring dispatchability and alignment with national RE goals.

