

Deep Dive Workshop

Doubling Down to Triple Up: HTLS Conductors for Improved Grid Efficiency and Grid Security (ADB)

4 June 2025 (Wednesday) • 2:00-3:30 p.m.

Regional Cooperation and Integration, and Financing Solutions

Vincent Bu

Head of Epsilon Cable - APAC

Featured Speaker

EPSILON COMPOSITE


The alternative

ADB

38 YEARS IN CARBON COMPOSITE

- Based in Gaillan Médoc (France), since 1987
- Pioneer in carbon fiber pultrusion | 80% export
- 10% of turnover dedicated to R&D | >100 patents
- Dedicated branch for OHL : Epsilon Cable

■ THE CONDUCTOR TECHNOLOGY

COMPOSITION OF THE COMPOSITE CORE:

CARBON FIBERS

No thermal expansion
Very high tensile strength
Stiff
Lightweight
Corrosion free

GLASS FIBERS

Galvanic corrosion protection
High tensile strength
Flexible
Corrosion free

EPOXY MATRIX

High temperature resistance
Lightweight
Corrosion free

	HVCRC®
Volume fiber ratio	65% Carbon Fiber 35% Glass Fiber
Coefficient of thermal expansion	1.3 μm/°C
Stiffness – E Modulus	123 GPa
Resistance	>2 250 MPa
	♣0.4mm

₿ B987/B987M – 20

High Strength Grade

310 ksi (2137 MPa)

355°F [180°C] to 482°F [250°C]

0.015 in. [0.38 mm]

95 % retention of rated tensile strength after 52 weeks of heat exposure

50 times diameter of CFC

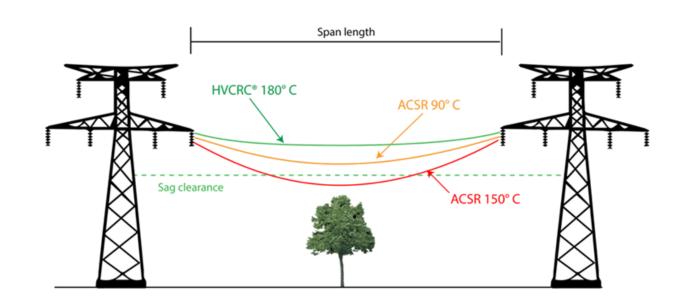
16.2 Msi (111.7 GPa)

■ INTRODUCTION OF HVCRC®

BASIC SPECIFICATIONS :		ACSR 240/40 (Hawk)	HVCRC® 320/40 (Hawk)
	Conductor	21.77 mm	21.79 mm
Alı	uminum section	242 mm ²	317 mm ²
	Linear mass	978 kg/km	950 kg/km
DC resistance @ 20°C		0.1199 ohm/km	0.0884 ohm/km
Ampacity		700 amps	1300 amps
Maximum operating temp		90°C	180°C
Coefficient of Below thermal knee point		18.4 x 10 ⁻⁶ /°C	18.11 x 10⁻⁵/°C
thermal expansion	Above thermal knee point	12 x 10 ⁻⁶ /°C	1.3 x 10 ⁻⁶ /°C
Tensile strength		87 kN	108 kN

- ✓ Low losses
- √ High ampacity

- ✓ Low sag
- **✓** High Tensile


■ INTRODUCTION OF HVCRC®

BENEFITS OF HVCRC®:

Low Sag	<u> </u>	ACSR 240/40	VS HVCRC® 320/40
Line status	Temp		
ACSR max	90°C	8.16m	6.82m
operating temp	90 C	(725 Amps*)	(830 Amps*)
HVCRC max	180°C	/	7.92m
operating temp	100 C	/	(1280 Amps*)

High ROI	ACSR 240/40 V	S HVCRC® 320/40	
Ampacity	50 % load => 350 Amps		
Losses per year	143,366 kWh/km	108,598 kWh/km	
	gs per year cost 0.07\$/kWh)	2,430 \$/km	
Price differ	rence with ACSR	13,500 \$/km	
ROI (Retur	n of Investment)	6 years	

Low CO2	ACSR 240/40	HVCRC® 320/40
Savings per y	/ear	34,800kWh/km
Savings by y (emission @ 475 g	16,500kgCO2/km /year	
Savings for 100km long line		10,000tonsCO2 /year

4,900 round-trip tickets NY-London!!!

■ PARTICIPATION TO STANDARDIZATION COMMITTEE

Committees' Name Standards' Name **Description of the standard Status NEMA/ANSI Fittings** Accessories and fittings for HTLS technologies C119.7 Installation IEEE TF524 Installation of Overhead Transmission Line Conductors **Conductors** Guide for Determining the Effects of High-Temperature Operation IEEE TF1283 **Fittings** on Conductors, Connectors, and Accessories **Composite** Standard Specification for Carbon Fiber Thermoset Polymer Matrix Member **ASTM B987M-20** Composite Core (CFC) for use in Overhead Electrical Conductors of group core ASTM B01 Shaped Wire, Compact Concentric-Lay-Stranded Aluminum **Conductors** Conductors, Carbon Fiber Composite Core Supported (ACCFCS/TW) **ASTM B01.07** Installation Handling HTLS conductors CIGRE WG B2.66 CIGRE WG B2.78 Use of high temperature conductors in new overhead lines Design **Conductors** Inspection post installation, maintenance and end of life of HTLS CIGRE WG B2.94 **Fittings** solutions **Leader** of Conductors for overhead lines – Fiber reinforced composite core the group Composite TS IEC 62818 used as supporting member material core

ADB

■ CASE STUDY #1

• Uprating of lines for fast developing industrial area.

- Relocation of Chinese manufacturing geopolitical reason, lower labor cost and diversification
- Rapid industrial development in Thanh Hoa province –
 Index of Industrial Production (IIP) +15% annually
- Industrial parks like the Nghi Son economic zone and the planned Nghi Son LNG power plant resulted in the requirement of increased capacity on the power lines.
- CFC could help to future proof grids.

PROJECT DETAILS

Project Name: Improving transmission capacity of 110kV line from 220kV Nghi Son - Tinh Gia 2 substation, Thanh Hoa province

Country: Vietnam **Utility Name: EVN**

Conductor Size: HVCRC Lisbon

Conductor quantity delivered: 104 km

Line length: 17.3 km Number of circuits: 2

Number of conductors per phase: 1

Voltage: 110kV

Involved Parties

Cable Manufacturer

Hardware and fittings

104 km of conductor with 7,11mm core

Line Info

Conductor: HVCRC® 320-40 (Lisbon

Voltage: 110 kV

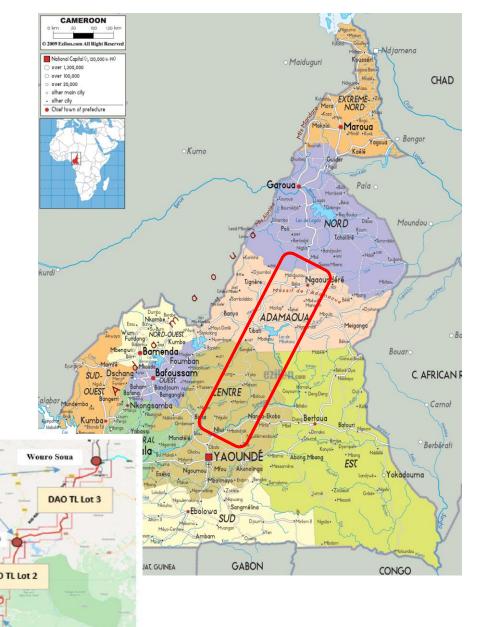
Design: 2 circuits 1 conductor/phase

Line length: 17.3 km

Max capacity: 1 300 A (248 MVA)

TECHNICAL DATA SHEET		HVCRC® 320 - 40 Epsilon Advanced Conductors		EPSILON CABLE	
International size	LISBON				
ASTM Size	HAWK				
Technical designation	ECRC® 320-AL0/40-S1	_		2	1
		_		Govern	ning Units: Metric
STRANDING CONFIGURATION					
	No. & I	Diameter of HVCRC core		1 x 7.11	mm
	Aluminium Laye	ers Construction / height	16 TW x	3.67	mm
ATA [1st lay	er composition and Øeq	6 x	5.03	mm
H0000H	2nd lay	er composition and Øeq	10 x	5.02	mm
	Lay	Direction of outer layer	Rig	ht Hand (Z)	

Grid interconnection



- Interconnection line: Cameroon Chad, later Nigeria funded by the World Bank.
- First phase: Linking RIS (southern grid) to RIN (northern grid)

- Linking Nachtigal Hydroplant (420MW) to the rest of Cameroon and beyond.
- Originally AAAC 570 (300M\$) -> 400kv (600M\$) ->
 225kv (350M\$) HVCRC Arlington 750 MW capacity

4	Unit₄	HVCRC Arlington.	AAAC 570₽
Conductor Ø₽	mm₄	29.87₽	31.05₽
Cross section₽	mm²₊	666.6₽	570₽
Weight₽	kg/km₽	1647₽	1615₽
Breaking load _€	<u>k</u> N₀	195.8₽	185₽
Modulus of elasticity.	GPa₽	62₽	54₽
DC resistance @ 20°C₁	ohm/km₽	0.0471₽	0.0585₽
CTE₽	÷.	18.41	23₽
Maximum operating T°	°C	180₽	75₽
Maximum current ₂	Amps₽	1924₽	1188₽

DAO Ss Lot 1

PROJECT DETAILS

Project Name: PIRECT RIS - RIN

Location: Cameroon

Utility Name: SONATREL

Conductor Size: HVCRC Arlington

Conductor quantity delivered: 6000km (2300 km)

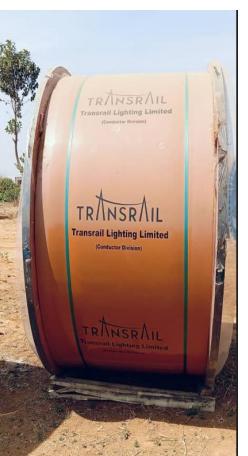
Line length: 515 km (195km HVCRC)

Number of circuits: 2

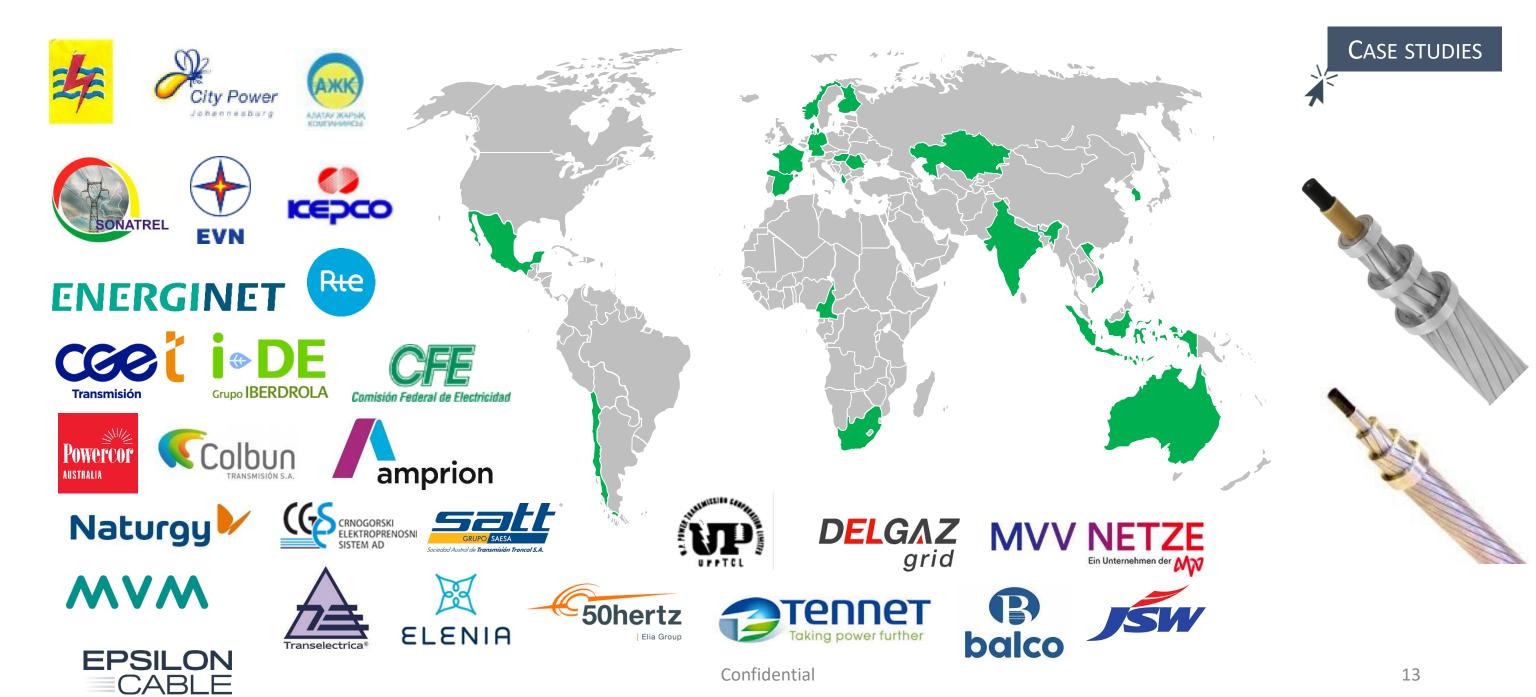
Number of conductors per phase: 2

Voltage: 225kV

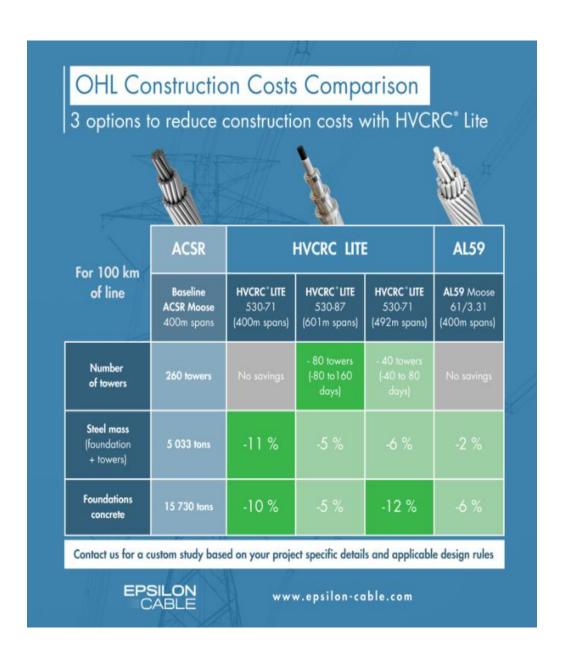
Involved Parties



Hardware and fittings



EPSILON CABLE PROJECTS: TRACK RECORD


13

ADB

- R&D, new products and service :
- Corecheck®: inspection of glass layer after installation
- HVCRC® Lite: cost efficient conductor for new lines
- Ageing model: to predict core end of life depending on operating conditions and utility design rules

For more information & news about HTLS solutions,

subscribe to our social media channels:

