The Future of Building Energy Codes

Tanmay Tathagat, Nidhi Gupta

Environmental Design Solutions [EDS]

Building Energy Codes

Most popular policy instrument for addressing building energy use

Industry Transport Residential Commercial Agriculture Others

Source: IEA, Global Electricity Consumption by Sector

Status of Building Energy Codes

~88 countries have either mandatory or voluntary building energy codes in place.
100+ countries do have any building energy codes.

> Performance 21 37 20 Prescriptive

Source: World Bank 2025, IEA 2022

Limited scope covered by building energy codes...

ASIA CLEAN ENERGY FORUM (ACEF) 2025

Missed Opportunities of Energy Savings in New Buildings

- 1. Scant data on the compliance & actual performance.
- Real word conditions occupancy, weather and operational parameters can be very different from code assumptions.
- 3. 25-50% of end-uses are not regulated.
 - 4. **Degradation** of equipment & system **performance**. New technologies & systems are not upgraded till the obsolescence of existing equipment
 - 5. Building management and controls are rarely integrated and operate on ideal conditions.

Traditional codes are no longer the best tools

- 1. Codes are static and focused on design compliance
- 2. Difficult and complex codes -
 - Take long time to develop and update.
 - Are difficult to understand by municipal authorities.
 - Increase costs of compliance and enforcement.

Strategy for Future Building Energy Codes

Energy Efficiency & Net Zero \rightarrow Decarbonization and Climate Goals

Framework for Future Building Energy Code

Responsive to Multiple Variables : Climate, Occupancy, Usage, Comfort, **Utility Requirements**

Simple design requirements

Commissioning

check

Smart-meter enabled and AI-based compliance for a) Carbon Emissions b) Grid-flexibility (requirements of local utility)

Design / **Construction Stage**

Occupancy Stage

Post-Occupancy **Stage Performance** Checks

Long-Term Actual Performance Over a Period of Time

Now

Design Intent Limited Coverage Complicated

Low Compliance Rate Disconnected from Real Performance → Absence of feedback loops

Future

Efficient, Connected, Smart, Flexible

Simple design requirements

Compliance based on Realtime tracking \rightarrow As a default

AI-enabled & Progressive → Continuous feedback loop

Behaviour

Adaptation

Frugality

Sufficiency

ASIA CLEAN ENERGY FORUM 2025

2-6 June | ADB Headquarters, Manila

Thank You

Nidhi Gupta

Environmental Design Solutions nidhi@edsglobal.com

