





### Deep Dive Workshop

# Doubling Down to Triple Up: HTLS Conductors for Improved Grid Efficiency and Grid Security (ADB)

4 June 2025 (Wednesday) • 2:00-3:30 p.m.

### **ASIA CLEAN ENERGY FORUM 2025**

Empowering the Future: Clean Energy Innovations, Regional Cooperation and Integration, and Financing Solutions

2-6 June | ADB Headquarters, Manila



## ADB

## Luke, Ogoshi

Division Director Tokyo Rope International ACFR Division

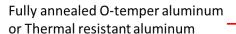
**Featured Speaker** 





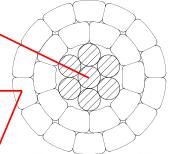
# HTLS Conductor With a Stranded Carbon Fiber Core

June - 2025


TOKYO ROPE INTERNATIONAL INC.







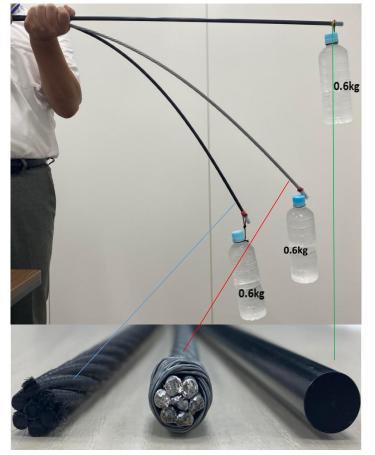

- ➤ Carbon Fiber Composite Cable core
- 7 strand core in several sizes
- > Flexible & robust

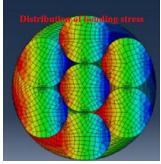


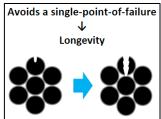
Trapezoidal shaped wires or Round wires

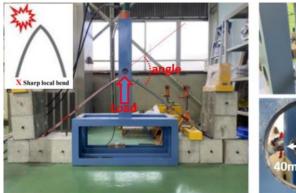
core: CFCC




- > Fully annealed 0-temper aluminum
- Thermal resistant aluminum
- > Trapezoidal shaped wires
- > Round wires
- > Easy installation
- > Conventional equipment
- Conventional hardware design





## **CFCC** is stranded core: Flexible & Robust

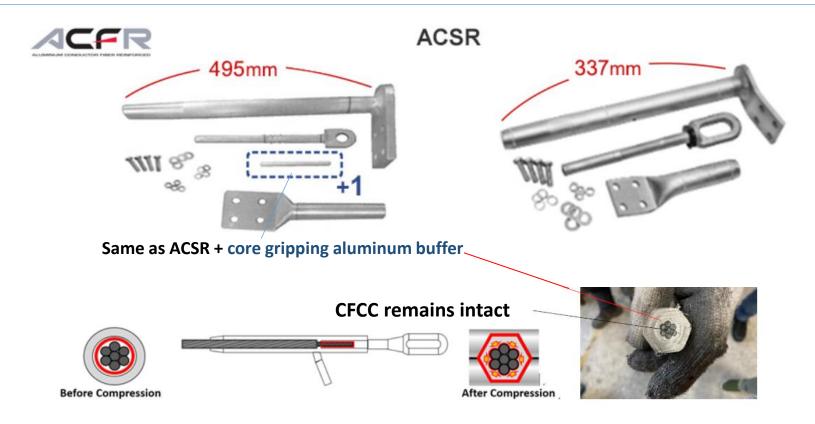
- The CFCC is more flexible than a similar size steel core
- Severe bending test shows that the CFCC is difficult to break
- In case there is a problem during installation, it will be clearly visible on the outside of the conductor
















## Compression-Type Fitting just like ACSR





#### <ACFR Hardware >

- No special equipment or procedure required
- Reasonable pricing
- Local manufacturing (subject to approval)
- Virtually same installation time as ACSR (more advantageous for multi-bundle)
- Same QC method as ACSR (Checking across-flat width)

## Design Concept for ACFR Technology





**ACSR** 



Aluminum Shape

Round or Trapezoidal

Core Shape

Stranded

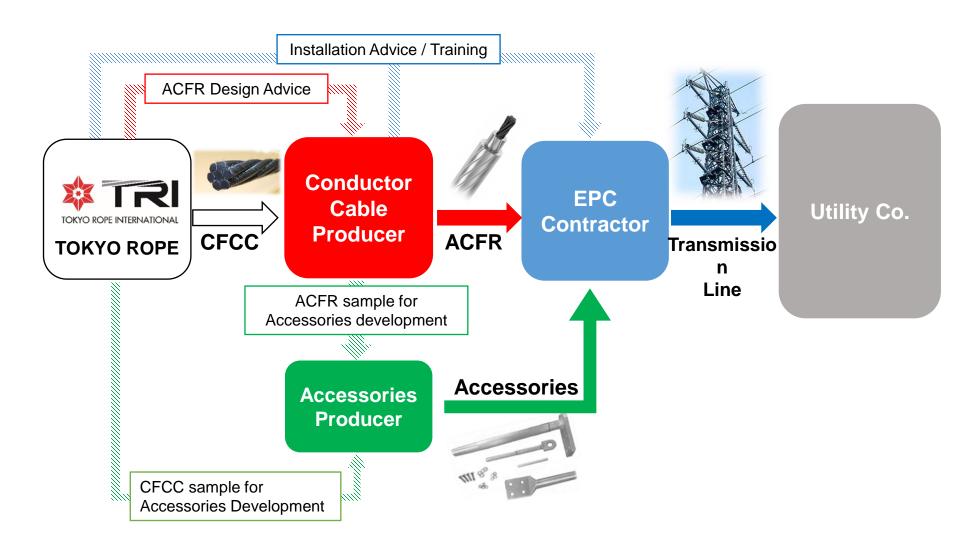
Hardware Method

Compression

ACFR is ACSR Like HTLS Conductor



## Design Example: ACSR vs ACFR.


Precondition: Same conductor diameter (Zebra size)

| Type |                            | Size               | Dia.  | Operating<br>Temp. | Transmission<br>Loss | Transmission Capacity         | Sagging             |                    |
|------|----------------------------|--------------------|-------|--------------------|----------------------|-------------------------------|---------------------|--------------------|
| туре |                            |                    |       |                    |                      |                               | Reconduc-<br>toring | New Line           |
| ACSR | "Conventional"             | Zebra<br>(430/55)  | 28.62 | 75 °C              | Standard             | Standard<br>(700A)            | Stan                | dard               |
| ACFR | "Low Loss"                 | Zebra Eq. (542/56) | 28.62 | 67 °C              | 26% Less             | Same<br>(up to +29%)          | Same                | 16% Less<br>(700A) |
|      | " <u>High</u><br>Capacity" | Zebra Eq. (494/95) | 28.62 | 180 °C             | More (※)             | More than<br>double<br>(218%) | Same                | 26% Less<br>(700A) |

- (※) Transmission Loss of ACFR is bigger operating at 218% of course but ACSR need another new circuit to get near the same transmission capacity of ACFR.
- Using ACFR for Low loss can have a payback time of only 3-5 years



## ACFR. Basic business model





## Supply for 60+ projects

| Supply | ACFR Size     | Voltage | Country   | Utility Name    |
|--------|---------------|---------|-----------|-----------------|
| 2002   | 160/37-T1-RR  | 66kV    | Japan     | Tohoku Electric |
| 2003   | 160/37-T1-RR  | 66kV    | Japan     | Tohoku Electric |
| 2012   | 320/35-FA-TT  | 110kV   | China     | Hainan Power    |
| 2013   | 320/37-FA-TT  | 220kV   | China     | Hainan Power    |
| 2015   | 312/37-FA-TT  | 150kV   | Indonesia | PLN             |
| 2015   | 312/37-FA-TT  | 150kV   | Indonesia | PLN             |
| 2017   | 312/37-FA-TT  | 150kV   | Indonesia | PLN             |
| 2018   | 312/37-FA-TT  | 150kV   | Indonesia | PLN             |
| 2018   | 312/37-FA-TT  | 150kV   | Indonesia | PLN             |
| 2018   | 493/69-FA-TT  | 138kV   | USA       | CenterPoint     |
| 2018   | 492/56-FA-TT  | 22kV    | India     | JSW             |
| 2019   | 312/37-FA-TT  | 150kV   | Indonesia | PLN             |
| 2019   | 493/69-FA-TT  | 138kV   | USA       | CenterPoint     |
| 2019   | 200/28-T1-TT  | 138kV   | Brazil    | CEMIG           |
| 2020   | 242/56-FA-TT  | 138kV   | USA       | LCRA            |
| 2020   | 665/71-FA-TTT | 230kV   | Thailand  | EGAT            |
| 2020   | 99/17-T3-RR   | 66kV    | India     | Sikkim Board    |
| 2020   | 312/37-FA-TT  | 150kV   | Indonesia | PLN             |
| 2020   | 281/37-FA-TT  | 132kV   | India     | APTRANSCO       |
| 2021   | 103/44-T3-TT  | 69kV    | Canada    | NB Power        |
| 2020   | 377/37-T1-TT  | 138kV   | Brazil    | CTEEP           |
| 2021   | 220/28-T1-TT  | 138kV   | Brazil    | CEMIG           |
| 2021   | 245/37-FA-RR  | 230kV   | Ecuador   | CELEC           |
| 2021   | 492/56-FA-TT  | 220kV   | India     | MPPTCL          |
| 2021   | 281/37-FA-TT  | 132kV   | India     | JKPTCL          |
| 2022   | 483/97-T3-TT  | 230kV   | USA       | Entergy         |
| 2022   | 493/69-FA-TT  | 230kV   | USA       | Entergy         |
| 2022   | 493/69-FA-TT  | 115kV   | USA       | Entergy         |
| 2022   | 493/69-FA-TT  | 138kV   | USA       | Centerpoint     |
| 2022   | 470/56-FA-TT  | 275kV   | Malaysia  | TNB             |
| 2022   | 281/37-FA-TT  | 132kV   | India     | UPPTCL          |
| 2022   | 281-37-FA-TT  | 132kV   | India     | UPPTCL          |
| 2022   | 267/37-FA-TT  | 132kV   | India     | JKPDD           |
| 2022   | 539/56-FA-TTT | 220kV   | India     | PSTCL           |

| Supply | ACFR Size     | Voltage | Country   | Utility Name    |
|--------|---------------|---------|-----------|-----------------|
| 2022   | 190/37-T1-TT  | 66kV    | Japan     | Tohoku Electric |
| 2023   | 539/56-FA-TTT | 220kV   | India     | PSTCL           |
| 2023   | 220/28-T1-TT  | 138kV   | Brazil    | CEMIG           |
| 2023   | 539/56-FA-TTT | 220kV   | India     | JKPTCL          |
| 2023   | 483/97-FA-TT  | 230kV   | USA       | Oncor           |
| 2023   | 806/97-T3-TTT | ND      | USA       | Entergy         |
| 2023   | 483/97-FA-TT  | 138kV   | USA       | Austin Energy   |
| 2023   | 806/97-T3-TTT | ND      | USA       | Entergy         |
| 2023   | 214/28-FA-TT  | 115kV   | USA       | BGE-Exelon      |
| 2024   | 281/37-FA-TT  | 132kV   | India     | MPPTCL          |
| 2024   | 768/55-T1-RRR | 138kV   | Brazil    | EDP             |
| 2024   | 215/23-FA-TT  | 66kV    | India     | PSPCL           |
| 2024   | 281/37-FA-TT  | 132kV   | India     | WB Area         |
| 2024   | 415/44-FA-TT  | 33kV    | Indonesia | Aman            |
| 2024   | 515/55-FA-TT  | 150kV   | Indonesia | Aman            |
| 2024   | 211/28-FA-TT  | 66kV    | Malaysia  | SESB            |
| 2024   | 265/44-T3-RR  | 220kV   | Austria   | APG             |
| 2024   | 281/37-FA-TT  | 132kV   | India     | PGCIL           |
| 2024   | 367/44-FA-TT  | 220kV   | Vietnam   | NPT             |
| 2024   | 534/55-T1-TT  | 230kV   | Brazil    | Copel           |
| 2024   | 312/37-FA-TT  | 150kV   | Indonesia | PLN             |
| 2024   | 312/37-FA-TT  | 150kV   | Indonesia | PLN             |
| 2024   | 165/23-FA-TT  | 66kV    | India     | KPTCL           |
| 2024   | 131/18-FA-TT  | 33kV    | India     | Jindal          |
| 2024   | 146/17-FA-TT  | 66kV    | India     | Kudan           |
| 2024   | 165/23-FA-TT  | 66kV    | India     | KPTCL           |
| 2024   | 805/96-FA-TTT | ND      | USA       | SCE             |
| 2025   | 303/67-T3-TT  | 400kV   | HK/China  | CLP             |



## Project Profile : Japan – First Projects

#### **Project Overview**

Customer Tohoku Electric Power Co

Project Kashimadai Line / Sekiya Line

Location Miyagi, Niigata / Japan Type Reconductoring project

Year Installed 2002 / 2003

Voltage 66 kV

#### **Solution**

ACFR 159/37-T1-RR (ACFR 160)

#### Result

20% capacity increase while maintaining clearances
Utilized existing towers without modification
Maintained existing right of way

2003 still in operation

The olderst transmission line using carbon core in the world with 20+ years of operating to date without problems







Japan

## Disassembly and Inspection of old line

#### 4. Performance verification test results of ACFR

- After using ACFR for 16 years near the coast, Performance verification tests conducted.
- 1. Appearance of CFCC
  - ⇒ No damage or corrosion was observed in the CFCC
- Cross section of CFCC
  - ⇒ No cracks, damage, or other abnormalities were observed in the CFCC
- Tensile test result of ACFR
  - ⇒ Almost the same tensile load as in the acceptance test



CFCC at the bottom of sagging

Session 2022 Capacity Enhancement, Refurbishment Evaluation of long-term reliability of the carbon fiber core wire and development of technologies to expand its application Hiroaki SASA\* Tomovuki AOYAMA Naohiko SUDO Tohoku Electric Power Tohoku Electric Power Tohoku Electric Power Network Co., Inc. Network Co., Inc. Network Co., Inc. Japan iko.fs@tohoku-ep Japan Japan Kiyonobu NARA Takao KANEKO Mami NAKAGAWA Kitanihon Electric Fuiikura Ltd. Furukawa Electric Power Cable Co., Ltd. Systems Co., Ltd.

#### SUMMARY

Japan nara@kitaniti-td.co.jp

In order to increase conductor clearnee above ground in urban areas, methods to reconstruct or raise the tower have been adopted. However, when using these methods, the construction cost is increased due to the restriction of land use for working space and the limitation of working on site. Therefore, in 2002, the authors developed an Aluminum Conductor Piètre Reinforced (thereinather, ACPR), which uses a Carbon Fiber Composite Cable (hereinather, CPCC) instead of a conventional steel core, in order to increase conductor clearnee above corporate.

Japan

The demand for ACFR has been increasing in recent years because replacing the ACSR with the thermal-resistant ACFR (TACFR) can reduce conductor sag and increase transmission capacity without reconstructing existing transmission towers.

The authors had installed ACTR on a 66 kV transmission line about 8 km from the coast for 16 years from December 2002 to January 2019. Subsequently, various evaluation tests were conducted to evaluate the reliability of the ACTR and the compression-type dead-end clamp that had been used over a long-term service of overhead lines. As a result, it was judged that ACTR can be used without any problem during the life of the transmission facility because no significant deterioration was observed and the tensile load tended to slightly decrease. No significant degradation was also observed for the compression-type dead-end clamp.

Furthermore, the authors have developed SBTACFR (SB: Smooth Body), in which the aluminum strand is formed into a trapecolial shape to enlarge the cross-sectional area of the aluminum portion, thus reducing power losses and increasing the transmission capacity. In addition, we have developed a compession-type dead end calmp, which passes through a sheave, making it possible to reduce the work time required for compression on the tower. And the application of counterweights to suppress be about a complex of the compession of the suppression of the supplication of ACFR has been forested.

#### KEYWORDS

HTLS, ACFR, TACFR, CFCC, Composite-conductor, Long term reliability evaluation, Fitting

\*Page from a presentation by the Utility in Cigre forum



## Project Profile: Hill Stringing in India

#### **Project Overview**

Customer JKPTCL

Project Cheshmashahi – Pampore line in Srinagar

Location India

Type Reconductoring project

Year Installed 2022 Voltage 132 kV

#### **Solution**

ACFR 281/37-FA-TT

#### Result

Total line length of the project was 13 kms and more than 90% was in hill.

It was difficult to access with equipment due to the hills and military area restriction.

The conductor had to be carried by people for 10 kms to the site for pulling

Manual stringing method had to be used extensively but that was possible due to the robust and flexible ACFR conductor.







## Project Profile: Mountain Crossings in Brazil

#### **Project Overview**

Customer Cemig

Project Minas Gerais

Location Brazil

Type New line project

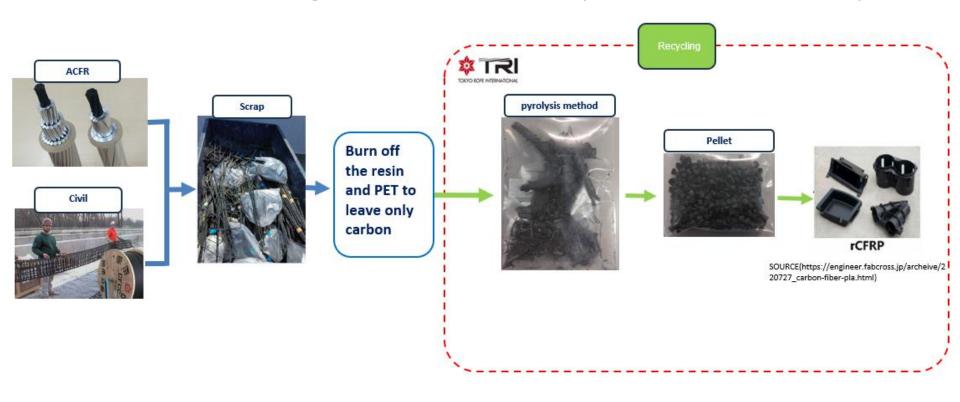
Year Installed 2021 Conductor Length 60 km Voltage 138 kV



#### **Solution**

ACFR 220/28-T1-TT

#### Result


Crossings in mountainous area up to 1.1 km and up to 300 m elevations Doubled capacity of line while maintaining clearances
This was a new field installation where ACFR made crossings easier
The flexibility and robustness of ACFR also made Lay-Out pulling possible when it was difficult to place pulling equipment



## For Sustainable Circular Economy



Thanks to its unique material composition, **CFCC** can be recycled at a reasonable cost, making it both economically and environmentally sound.





## Thank you!

